scholarly journals Chemical Responses to the Biotic and Abiotic Environment by Early Diverging Metazoans Revealed in the Post-Genomic Age

2019 ◽  
Vol 59 (4) ◽  
pp. 731-738 ◽  
Author(s):  
Beth Okamura ◽  
Paul F Long ◽  
Laura D Mydlarz

Abstract For many years methodological constraints limited insights on the molecular biology of non-model organisms. However, the development of various sequencing platforms has led to an explosion of transcriptomic and genomic data on non-model systems. As a consequence the molecular drivers of organismal phenotypes are becoming clearer and the chemicals that animals use to detect and respond to their environments are increasingly being revealed—this latter area inspired our symposium theme. The papers in this volume broadly address this theme by their more specific focus in one of the following general areas: 1) sensory biology and the molecular basis of perception, 2) chemicals deployed to deal with the biotic and abiotic environment, and 3) chemical interactions along the parasite–mutualist continuum. Here we outline and synthesize the content of these papers—an exercise which demonstrates that sophisticated gene repertoires enable early diverging metazoans to encode many of the signaling, sensory, defensive, and offensive capacities typically associated with animals that have complex nervous systems. We then consider opportunities and associated challenges that may delay progress in comparative functional biochemistry, a reinvigorated field that can be expected to rapidly expand with new ’omics data. Future knowledge of chemical adaptations should afford new perspectives on the comparative evolution of chemical mediators.

2016 ◽  
Author(s):  
Ousmane H. Cissé ◽  
Jason E. Stajich

AbstractBackgroundInexpensive high-throughput DNA sequencing has democratized access to genetic information for most organisms so that research utilizing a genome or transcriptome of an organism is not limited to model systems. However, the quality of the assemblies of sampled genomes can vary greatly which hampers utility for comparisons and meaningful interpretation. The uncertainty of the completeness of a given genome sequence can limit feasibility of asserting patterns of high rates of gene loss reported in many lineages.ResultsWe propose a computational framework and sequence resource for assessing completeness of fungal genomes called FGMP (Fungal Genome Mapping Project). Our approach is based on evolutionary conserved sets of proteins and DNA elements and is applicable to various types of genomic data. We present a comparison of FGMP and state-of-the-art methods for genome completeness assessment utilizing 246 genome assemblies of fungi. We discuss genome assembly improvements/degradations in 57 cases where assemblies have been updated, as recorded by NCBI assembly archive.ConclusionFGMP is an accurate tool for quantifying level of completion from fungal genomic data. It is particularly useful for non-model organisms without reference genomes and can be used directly on unassembled reads, which can help reducing genome sequencing costs.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Ayla Sessions ◽  
Gaurav Kaushik ◽  
Adam Engler

Aging is associated with extensive remodeling of the heart, including basement membrane extracellular matrix (ECM) components that surround cardiomyocytes. Remodeling is thought to contribute to impaired cardiac mechanotransduction, but the contribution of specific basement membrane ECM components to age-related cardiac remodeling is unclear, owing to current model systems being complex and slow to age. To investigate the effect of basement membrane remodeling on mechanical function in genetically tractable, rapidly aging, and simple model organisms, we employed Drosophila melanogaster, which has a simple trilayered heart tube composed of only basement membrane ECM. We observed differential regulation of collagens between laboratory Drosophila strains , i.e. yellow-white ( yw ) and white-1118 ( w 1118 ), leading to changes in muscle physiology, which were linked to severity of dysfunction with age. Therefore, we sought to understand the extent to which basement membrane ECM modulates lateral cardiomyocyte coupling and contractile function during aging. Cardiac-restricted knockdown of ECM genes Pericardin , Laminin A , and Viking in Drosophila prevented age-associated heart tube restriction and increased contractility, even under viscous load. Most notably, reduction of Laminin A expression decreased levels of other genes that co-assemble in ECM, leading to overall preservation of contractile velocity and extension of median organismal lifespan by 3 weeks or 39%. These data provide new evidence of a direct link between basement membrane ECM homeostasis, contractility, and maintenance of lifespan.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Ayla O Sessions

Increased deposition of extracellular matrix (ECM) is observed in all advanced age heart failure patients, but current model systems are complex and slow to age. To investigate the effect of extracellular remodeling on mechanical function in genetically tractable, rapidly aging, and simple model organisms, we employed Drosophila melanogaster, which has a simple trilayered heart tube. We found that two common wildtype strains of Drosophila, i.e. yellow-white (yw) and white-1118 (w1118), exhibit different cytoskeletal and ECM remodeling with age. Using a recently developed nanoindentation method to measure cardiomyocyte stiffness and high speed optical imaging to assess contractility of intact Drosophila hearts, we found that yw flies had stiffer intercalated discs (ICD) and exhibited diastolic dysfunction with age. On the other hand, w1118 flies had a shorter lifespan compared to yw, did not exhibit ICD stiffening, had a less severe diastolic dysfunction, and showed an increase in ECM layer thickness between ventral muscle (VM) and cardiomyocyte (CM) layers of the heart tube. To modulate ECM and assess its effect in the aged w1118 flies, we knocked-down ECM genes LamininA and Viking (homologous to Collagen IV). Both ECM KD genotypes exhibited diastolic dilation with increased fractional shortening at adult (1wk) and aged (5wk) time points. The LamininA KD resulted in decreased cardiomyocyte stiffness correlating with increased relaxation velocities in adult flies and preservation of shortening and relaxation velocities in aged flies over controls. However, both the LamininA and Collagen IV KD flies experienced a basal increase in the decoupling of their cardiomyocytes as determined by heart period variance and % fibrillar heart-beats. These conductance issues were not enough to counteract the increased cardiac output and performance with age, and the Collagen IV KD outlived controls by 1.5 weeks median survival and the LamininA KD by 3 weeks. This suggests that the cell-ECM contacts in the basement membrane are intimately tied not only to the coupling of the cardiomyocytes of the Drosophila heart tube but also to cytoskeletal remodeling, but perhaps different ECM proteins have different mechanisms for interacting with the cardiomyocyte cytoskeleton.


2010 ◽  
Vol 107 (5) ◽  
pp. 2043-2047 ◽  
Author(s):  
Zheng Eelderink-Chen ◽  
Gabriella Mazzotta ◽  
Marcel Sturre ◽  
Jasper Bosman ◽  
Till Roenneberg ◽  
...  

Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily changes confer a survival advantage and dominate daily behavior, for example, waking us in the morning and helping us to sleep at night. The molecular mechanism of circadian clocks has been sketched out in genetic model systems from prokaryotes to humans, revealing a combination of transcriptional and posttranscriptional pathways, but the clock mechanism is far from solved. Although Saccharomyces cerevisiae is among the most powerful genetic experimental systems and, as such, could greatly contribute to our understanding of cellular timing, it still remains absent from the repertoire of circadian model organisms. Here, we use continuous cultures of yeast, establishing conditions that reveal characteristic clock properties similar to those described in other species. Our results show that metabolism in yeast shows systematic circadian entrainment, responding to cycle length and zeitgeber (stimulus) strength, and a (heavily damped) free running rhythm. Furthermore, the clock is obvious in a standard, haploid, auxotrophic strain, opening the door for rapid progress into cellular clock mechanisms.


2018 ◽  
Vol 35 (16) ◽  
pp. 2843-2846 ◽  
Author(s):  
Hung Nguyen ◽  
Sangam Shrestha ◽  
Sorin Draghici ◽  
Tin Nguyen

Abstract Summary Since cancer is a heterogeneous disease, tumor subtyping is crucial for improved treatment and prognosis. We have developed a subtype discovery tool, called PINSPlus, that is: (i) robust against noise and unstable quantitative assays, (ii) able to integrate multiple types of omics data in a single analysis and (iii) dramatically superior to established approaches in identifying known subtypes and novel subgroups with significant survival differences. Our validation on 12,158 samples from 44 datasets shows that PINSPlus vastly outperforms other approaches. The software is easy-to-use and can partition hundreds of patients in a few minutes on a personal computer. Availability and implementation The package is available at https://cran.r-project.org/package=PINSPlus. Data and R script used in this manuscript are available at https://bioinformatics.cse.unr.edu/software/PINSPlus/. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Stefano Mammola ◽  
Enrico Lunghi ◽  
Helena Bilandžija ◽  
Pedro Cardoso ◽  
Volker Grimm ◽  
...  

(1) Caves and other subterranean habitats fulfill the requirements of experimental model systems to address general questions in ecology and evolution. Yet, the harsh working conditions of these environments and the uniqueness of the subterranean organisms have challenged most attempts to pursuit standardized research(2) Two main obstacles have synergistically hampered previous attempts. First, there is a habitat impediment related to the objective difficulties of exploring subterranean habitats and our inability to access the network of fissures that represent the elective habitat for the so-called “cave species.” Second, there is a biological impediment illustrated by the rarity of most subterranean species and their low physiological tolerance, often limiting sample size and complicating lab experiments.(3) We explore the advantages and disadvantages of four general experimental setups (in-situ, quasi in-situ, ex-situ, and in-silico) in the light of habitat and biological impediments. We also discuss the potential of indirect approaches to research. Furthermore, using bibliometric data, we provide a quantitative overview of the model organisms that scientists have exploited in the study of subterranean life.(4) Our over-arching goal is to promote caves as model systems where one can perform standardised scientific research. This is important not only to achieve an in-depth understanding of the functioning of subterranean ecosystems but also to fully exploit their long-discussed potential in addressing general scientific questions with implications beyond the boundaries of this discipline.


Author(s):  
Krisztina Takács-Vellai ◽  
Zsolt Farkas ◽  
Fanni Ősz ◽  
Gordon W. Stewart

AbstractPheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment.


2001 ◽  
Vol 79 (2) ◽  
pp. 218-232 ◽  
Author(s):  
David A Weisblat ◽  
Françoise Z Huang

Dramatic advances in understanding the development of selected "model" organisms, coupled with the realization that genes which regulate development are often conserved between diverse taxa, have renewed interest in comparative development and evolution. Recent molecular phylogenies seem to be converging on a new consensus "tree," according to which higher bilaterians fall into three major groups, Deuterostoma, Ecdysozoa, and Lophotrochozoa. Commonly studied model systems for development fall almost exclusively within the first two of these groups. Glossiphoniid leeches (phylum Annelida) offer certain advantages for descriptive and experimental embryology per se, and can also serve to represent the lophotrochozoan clade. We present an overview of the development of glossiphoniid leeches, highlighting some current research questions and the potential for comparative cellular and molecular studies.


2020 ◽  
Vol 60 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Tonia S Schwartz

Abstract Comparative stress biology is inherently a systems biology approach with the goal of integrating the molecular, cellular, and physiological responses with fitness outcomes. In this way, the systems biology approach is expected to provide a holistic understanding of how different stressors result in different fitness outcomes, and how different individuals (or populations or species) respond to stressors differently. In this perceptive article, I focus on the use of multiple types of -omics data in stress biology. Targeting students and those researchers who are considering integrating -omics approaches in their comparative stress biology studies, I discuss the promise of the integration of these measures for furthering our holistic understanding of how organisms respond to different stressors. I also discuss the logistical and conceptual challenges encountered when working with -omics data and the current hurdles to fully utilize these data in studies of stress biology in non-model organisms.


2006 ◽  
Vol 361 (1467) ◽  
pp. 393-401 ◽  
Author(s):  
Richard Mott

I survey the state of the art in complex trait analysis, including the use of new experimental and computational technologies and resources becoming available, and the challenges facing us. I also discuss how the prospects of rodent model systems compare with association mapping in humans.


Sign in / Sign up

Export Citation Format

Share Document