scholarly journals Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 2. Setting the scene

2010 ◽  
Vol 67 (4) ◽  
pp. 692-716 ◽  
Author(s):  
Yunne-Jai Shin ◽  
Lynne J. Shannon ◽  
Alida Bundy ◽  
Marta Coll ◽  
Kerim Aydin ◽  
...  

Abstract Shin, Y-J., Shannon, L. J., Bundy, A., Coll, M., Aydin, K., Bez, N., Blanchard, J. L., Borges, M. F., Diallo, I., Diaz, E., Heymans, J. J., Hill, L., Johannesen, E., Jouffre, D., Kifani, S., Labrosse, P., Link, J. S., Mackinson, S., Masski, H., Möllmann, C., Neira, S., Ojaveer, H., ould Mohammed Abdallahi, K., Perry, I., Thiao, D., Yemane, D., and Cury, P. M. 2010. Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 2. Setting the scene. – ICES Journal of Marine Science, 67: 692–716. Background is provided to the selection of ecological indicators by the IndiSeas Working Group, and the methodology adopted for analysis and comparison of indicators across exploited marine ecosystems is documented. The selected indicators are presented, how they are calculated is explained, and the philosophy behind the comparative approach is given. The combination of selected indicators is intended to reflect different dynamics, tracking processes that display differential responses to fishing, and is meant to provide a complementary means of assessing marine ecosystem trends and states. IndiSeas relied on inputs and insights provided by the local experts from participating ecosystems, helping to understand state and trend indicators and to disentangle the effect of other potential ecosystem drivers, such as climate variability. This project showed that the use of simple and available indicators under an ecosystem approach can achieve a real, wide-reaching evaluation of marine ecosystem status caused by fishing. This is important because the socio-economics of areas where fishing activities develop differs significantly around the globe, and in many countries, insufficient data are available for complex and exhaustive analyses.

2009 ◽  
Vol 67 (4) ◽  
pp. 686-691 ◽  
Author(s):  
Yunne-Jai Shin ◽  
Lynne J. Shannon

Abstract Shin, Y-J., and Shannon, L. J. 2010. Using indicators for evaluating, comparing and communicating the ecological status of exploited marine ecosystems. 1. The IndiSeas project. – ICES Journal of Marine Science, 67: 686–691. One of the challenges faced by the scientific community grappling with the ecosystem approach to fisheries is to propose a generic set of synthetic ecological indicators, which would accurately reflect the effects of fisheries on marine ecosystems, and could support sound communication and management practices. The IndiSeas Working Group was established in 2005 under the auspices of the Eur-Oceans Network of Excellence to develop methods to provide indicators-based assessments of the status of exploited marine ecosystems in a comparative framework. Here, we present the two main outputs of the first phase of the project: a suite of papers documenting a combination of indicator-based methods and results comparing the ecological status of the world's exploited marine ecosystems, and a website aiming to communicate these results beyond scientific audiences.


2015 ◽  
Vol 12 (11) ◽  
pp. 3301-3320 ◽  
Author(s):  
K. B. Rodgers ◽  
J. Lin ◽  
T. L. Frölicher

Abstract. Marine ecosystems are increasingly stressed by human-induced changes. Marine ecosystem drivers that contribute to stressing ecosystems – including warming, acidification, deoxygenation and perturbations to biological productivity – can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use large initial-condition ensemble simulations with an Earth system model under a historical/RCP8.5 (representative concentration pathway 8.5) scenario over 1950–2100 to consider emergence characteristics for the four individual and combined drivers. Using a 1-standard-deviation (67% confidence) threshold of signal to noise to define emergence with a 30-year trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005–2014 period, and 63% for the 2075–2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. For the case of two drivers, the tropics including habitats of coral reefs emerges earliest, with this driven by the joint effects of acidification and warming. It is precisely in the regions with pronounced emergence characteristics where marine ecosystems may be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results underscore the importance of sustained multi-decadal observing systems for monitoring multiple ecosystems drivers.


2021 ◽  
Vol 255 ◽  
pp. 01008
Author(s):  
Galyna Minicheva ◽  
Viktor Demchenko ◽  
Yevhen Sokolov

Based on the experience of managing coastal marine, and limans ecosystems of Ukraine, the theoretical scheme of Integrative Ecological Management is considered. The scheme includes the “Basic Diagnostic” block for which the key tools are: Basin Assessment, Ecosystem Approach and Ecosystem Services. Geo-information Technologies are demonstrated in order to assess the catchment areas of some limans and coastal marine ecosystems of Ukraine. With the ecosystem approach, it is necessary to use functional indicators for assessing autotrophic, heterotrophic and decomposer communities of the ecosystem, the bind of which is associated with Ecological Status of the water body. It is indicated that an important goal of environmental management is reducing the intensity of anthropogenic flows of substance and energy, which cause destruction of the ecological balance and devaluation of ecosystem services. For the second block of the scheme - “Decision Making” it is proposed to use Priority Management Algorithm principle as an effective tool which allows to achieve the target maximum at minimal cost. At the final stage of the “Target Result”, recommendations that are offered to stakeholders at the local, regional and national level must achievement the main objectives of the Integrative Ecological Management of coastal marine ecosystems and limans.


2017 ◽  
Vol 74 (7) ◽  
pp. 2040-2052 ◽  
Author(s):  
Jamie C. Tam ◽  
Jason S. Link ◽  
Axel G. Rossberg ◽  
Stuart I. Rogers ◽  
Philip S. Levin ◽  
...  

Abstract Modern approaches to Ecosystem-Based Management and sustainable use of marine resources must account for the myriad of pressures (interspecies, human and environmental) affecting marine ecosystems. The network of feeding interactions between co-existing species and populations (food webs) are an important aspect of all marine ecosystems and biodiversity. Here we describe and discuss a process to evaluate the selection of operational food-web indicators for use in evaluating marine ecosystem status. This process brought together experts in food-web ecology, marine ecology, and resource management, to identify available indicators that can be used to inform marine management. Standard evaluation criteria (availability and quality of data, conceptual basis, communicability, relevancy to management) were implemented to identify practical food-web indicators ready for operational use and indicators that hold promise for future use in policy and management. The major attributes of the final suite of operational food-web indicators were structure and functioning. Indicators that represent resilience of the marine ecosystem were less developed. Over 60 potential food-web indicators were evaluated and the final selection of operational food-web indicators includes: the primary production required to sustain a fishery, the productivity of seabirds (or charismatic megafauna), zooplankton indicators, primary productivity, integrated trophic indicators, and the biomass of trophic guilds. More efforts should be made to develop thresholds-based reference points for achieving Good Environmental Status. There is also a need for international collaborations to develop indicators that will facilitate management in marine ecosystems used by multiple countries.


2009 ◽  
Vol 67 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Steven A. Murawski ◽  
John H. Steele ◽  
Phillip Taylor ◽  
Michael J. Fogarty ◽  
Michael P. Sissenwine ◽  
...  

Abstract Murawski, S. A., Steele, J. H., Taylor, P., Fogarty, M. J., Sissenwine, M. P., Ford, M., and Suchman, C. 2010. Why compare marine ecosystems? – ICES Journal of Marine Science, 67: 1–9. Effective marine ecosystem-based management (EBM) requires understanding the key processes and relationships controlling the aspects of biodiversity, productivity, and resilience to perturbations. Unfortunately, the scales, complexity, and non-linear dynamics that characterize marine ecosystems often confound managing for these properties. Nevertheless, scientifically derived decision-support tools (DSTs) are needed to account for impacts resulting from a variety of simultaneous human activities. Three possible methodologies for revealing mechanisms necessary to develop DSTs for EBM are: (i) controlled experimentation, (ii) iterative programmes of observation and modelling (“learning by doing”), and (iii) comparative ecosystem analysis. We have seen that controlled experiments are limited in capturing the complexity necessary to develop models of marine ecosystem dynamics with sufficient realism at appropriate scales. Iterative programmes of observation, model building, and assessment are useful for specific ecosystem issues but rarely lead to generally transferable products. Comparative ecosystem analyses may be the most effective, building on the first two by inferring ecosystem processes based on comparisons and contrasts of ecosystem response to human-induced factors. We propose a hierarchical system of ecosystem comparisons to include within-ecosystem comparisons (utilizing temporal and spatial changes in relation to human activities), within-ecosystem-type comparisons (e.g. coral reefs, temperate continental shelves, upwelling areas), and cross-ecosystem-type comparisons (e.g. coral reefs vs. boreal, terrestrial vs. marine ecosystems). Such a hierarchical comparative approach should lead to better understanding of the processes controlling biodiversity, productivity, and the resilience of marine ecosystems. In turn, better understanding of these processes will lead to the development of increasingly general laws, hypotheses, functional forms, governing equations, and broad interpretations of ecosystem responses to human activities, ultimately improving DSTs in support of EBM.


2011 ◽  
Vol 7 (4) ◽  
pp. 484-486 ◽  
Author(s):  
Christian Möllmann ◽  
Alessandra Conversi ◽  
Martin Edwards

Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1–3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.


2013 ◽  
Vol 70 (4) ◽  
pp. 755-767 ◽  
Author(s):  
Scott I. Large ◽  
Gavin Fay ◽  
Kevin D. Friedland ◽  
Jason S. Link

Abstract Large, S. I., Fay, G., Friedland, K. D., and Link, J. S. 2013. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. – ICES Journal of Marine Science, 70: 755–767. Both fishing and environmental forces can influence the structure of marine ecosystems. To further understand marine ecosystems and to implement ecosystem-based fisheries management (EBFM), an evaluation of ecosystem indicators is warranted. In this context, it is particularly important to identify thresholds where fishing and environmental pressures significantly influence ecological indicators. We empirically determined numerical values of environmental forces and fishing pressure that significantly altered the response of ecological indicators for the Northeast Shelf Large Marine Ecosystem. Generalized additive models predicted a non-linear relationship for each pressure–response pairing. With this smoother, 95% confidence intervals (CI) for estimated first and second derivatives for each relationship were determined via parametric bootstrap. A significant trend or threshold was noted when the CI for the first or second derivative was greater or less than zero, delineating the level at which pressure variables influence the rate and direction of ecosystem indicator responses. We identify reference levels where environmental forces and fishing pressure result in ecosystem change by collectively examining the responses of multiple ecological indicators. Individual indicators showed unique responses to pressures, however, similar values for the pressures were associated with significant changes for multiple indicators. These reference levels establish a foundation for implementation of EBFM.


Author(s):  
Steve S Doo ◽  
Andrea Kealoha ◽  
Andreas Andersson ◽  
Anne L Cohen ◽  
Tacey L Hicks ◽  
...  

Abstract A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Kalenitchenko ◽  
Erwan Peru ◽  
Pierre E. Galand

AbstractPredicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.


Sign in / Sign up

Export Citation Format

Share Document