scholarly journals The migration of fin whales into the southern Chukchi Sea as monitored with passive acoustics

2016 ◽  
Vol 73 (8) ◽  
pp. 2085-2092 ◽  
Author(s):  
Koki Tsujii ◽  
Mayuko Otsuki ◽  
Tomonari Akamatsu ◽  
Ikuo Matsuo ◽  
Kazuo Amakasu ◽  
...  

Abstract Fin whales (Balaenoptera physalus) undergo seasonal migration in the Arctic Sea. Because their migration and distribution is likely affected by changes in global climate, we aimed to examine the migration timing of fin whales, and the relationship with prey availability within the oceanographic environment of the Arctic Sea, using passive and active acoustic monitoring methods. Automatic Underwater Sound Monitoring Systems were deployed in the southern Chukchi Sea from July 2012 to 2014 to determine the acoustic presence of fin whales. Furthermore, water temperature and salinity were recorded by a fixed data logger. An Acoustic Zooplankton Fish Profiler was additionally deployed to estimate prey abundance through backscattering strength. Sea ice concentrations were obtained by remote sensing data. Fin whale calls were automatically detected using a custom-made software, and the per cent of half-hours containing calls were counted. Fin whale calls were detected from 4 August to 20 October 2012 (78 d) and 25 July to 1 November 2013 (100 d). The extended period of acoustic presence of fin whales during 2013 when compared with 2012 is likely related to a longer ice-free period during 2013. Furthermore, generalized linear model analyses showed that half-hour periods containing calls increased with a rise in water temperature and zooplankton abundance during the initial call presence period, while they decreased with a decrease in water temperature and salinity during the end of the call presence period. Our results suggest that the rise in water temperature and zooplankton abundance affect the timing of migration of fin whales in a way that is consistent with the expansion of their suitable habitats and the extension of their presence in the Arctic Sea.

Ocean Science ◽  
2018 ◽  
Vol 14 (6) ◽  
pp. 1423-1433 ◽  
Author(s):  
Claudine Hauri ◽  
Seth Danielson ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Peter Winsor ◽  
...  

Abstract. Although Arctic marine ecosystems are changing rapidly, year-round monitoring is currently very limited and presents multiple challenges unique to this region. The Chukchi Ecosystem Observatory (CEO) described here uses new sensor technologies to meet needs for continuous, high-resolution, and year-round observations across all levels of the ecosystem in the biologically productive and seasonally ice-covered Chukchi Sea off the northwest coast of Alaska. This mooring array records a broad suite of variables that facilitate observations, yielding better understanding of physical, chemical, and biological couplings, phenologies, and the overall state of this Arctic shelf marine ecosystem. While cold temperatures and 8 months of sea ice cover present challenging conditions for the operation of the CEO, this extreme environment also serves as a rigorous test bed for innovative ecosystem monitoring strategies. Here, we present data from the 2015–2016 CEO deployments that provide new perspectives on the seasonal evolution of sea ice, water column structure, and physical properties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms, and export, zooplankton abundance and vertical migration, the occurrence of Arctic cod, and vocalizations of marine mammals such as bearded seals. These integrated ecosystem observations are being combined with ship-based observations and modeling to produce a time series that documents biological community responses to changing seasonal sea ice and water temperatures while establishing a scientific basis for ecosystem management.


2018 ◽  
Author(s):  
Claudine Hauri ◽  
Seth Danielson ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Peter Winsor ◽  
...  

Abstract. Although Arctic marine ecosystems are changing rapidly, year-round monitoring is currently very limited and presents multiple challenges unique to this region. The Chukchi Ecosystem Observatory (CEO) described here uses new sensor technologies to meet needs for continuous, high resolution, and year-round observations across all levels of the ecosystem in the biologically productive and seasonally ice-covered Chukchi Sea off the northwest coast of Alaska. This mooring array records a broad suite of parameters that facilitate observations, yielding better understanding of physical, chemical and biological couplings, phenologies, and the overall state of this Arctic shelf marine ecosystem. While cold temperatures and eight months of sea ice cover present challenging conditions for the operation of the CEO, this extreme environment also serves as a rigorous test bed for innovative ecosystem monitoring strategies. Here, we present data from the 2015–16 CEO deployments that provide new perspectives on the seasonal evolution of sea ice, water column structure and physical properties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms and export, zooplankton abundance and vertical migration, the occurrence of Arctic cod, and vocalizations of marine mammals such as bearded seals. These integrated ecosystem observations are being combined with ship-based observations and modeling to produce a time-series that documents biological community responses to changing seasonal sea ice and water temperatures while establishing a scientific basis for ecosystem management.


2015 ◽  
Vol 9 (2) ◽  
pp. 1735-1768 ◽  
Author(s):  
T. Kaminski ◽  
F. Kauker ◽  
H. Eicken ◽  
M. Karcher

Abstract. We present a quantitative network design (QND) study of the Arctic sea ice-ocean system using a software tool that can evaluate hypothetical observational networks in a variational data assimilation system. For a demonstration, we evaluate two idealised flight transects derived from NASA's Operation IceBridge airborne ice surveys in terms of their potential to improve ten-day to five-month sea-ice forecasts. As target regions for the forecasts we select the Chukchi Sea, an area particularly relevant for maritime traffic and offshore resource exploration, as well as two areas related to the Barnett Ice Severity Index (BSI), a standard measure of shipping conditions along the Alaskan coast that is routinely issued by ice services. Our analysis quantifies the benefits of sampling upstream of the target area and of reducing the sampling uncertainty. We demonstrate how observations of sea-ice and snow thickness can constrain ice and snow variables in a target region and quantify the complementarity of combining two flight transects. We further quantify the benefit of improved atmospheric forecasts and a well-calibrated model.


2020 ◽  
Vol 77 (10) ◽  
pp. 1612-1624
Author(s):  
Mark B. Barton ◽  
Johanna J. Vollenweider ◽  
Ron A. Heintz ◽  
Brenda L. Norcross ◽  
Kevin M. Boswell

The Arctic nearshore surrounding Point Barrow, Alaska, is a dynamic system with complex oceanographic and meteorological processes that drive community composition to change rapidly in space and time. Nearshore fish and zooplankton communities were sampled in the summers of 2013–2015. Spatial, temporal, environmental, and biological drivers of fish community structure in the Arctic nearshore surrounding Point Barrow were investigated using multivariate canonical correspondence analysis (CCA). A CCA model using the 13 most explanatory variables (three environmental, one spatial, four temporal, and five zooplankton abundances) explained 73% of the variance in community structure in this region. Distinct fish communities were identified within the three waterbodies that were studied (Chukchi Sea, Beaufort Sea, and Elson Lagoon), and these distinctions were largely driven by salinity. Species move into the nearshore at various times after landfast ice breaks up, creating an annual succession of species that can be found in these nearshore habitats. Low-latitude species tend to become abundant later in the summer season, whereas true Arctic species are present under the ice or move in shortly after breakup. Arctic species are also more abundant in colder years, whereas low-latitude species dominate during warmer years. The increasing abundance of low-latitude species in the Arctic nearshore may have serious implications for the food webs in these ecosystems as climate change continues.


2015 ◽  
Vol 9 (4) ◽  
pp. 1721-1733 ◽  
Author(s):  
T. Kaminski ◽  
F. Kauker ◽  
H. Eicken ◽  
M. Karcher

Abstract. We present a quantitative network design (QND) study of the Arctic sea ice–ocean system using a software tool that can evaluate hypothetical observational networks in a variational data assimilation system. For a demonstration, we evaluate two idealised flight transects derived from NASA's Operation IceBridge airborne ice surveys in terms of their potential to improve 10-day to 5-month sea ice forecasts. As target regions for the forecasts we select the Chukchi Sea, an area particularly relevant for maritime traffic and offshore resource exploration, as well as two areas related to the Barnett ice severity index (BSI), a standard measure of shipping conditions along the Alaskan coast that is routinely issued by ice services. Our analysis quantifies the benefits of sampling upstream of the target area and of reducing the sampling uncertainty. We demonstrate how observations of sea ice and snow thickness can constrain ice and snow variables in a target region and quantify the complementarity of combining two flight transects. We further quantify the benefit of improved atmospheric forecasts and a well-calibrated model.


Author(s):  
Lovrenc Lipej ◽  
Jakov Dulčić ◽  
Boris Kryštufek

Twenty-three observations of 26 fin whales Balaenoptera physalus are documented for the northern Adriatic. Records were more common along the eastern coast and have increased over the last decades. The latter coincides with the increased presence of other planktivorous vertebrates (humpback whale, basking shark) and possibly follow changes in the zooplankton abundance.


2020 ◽  
Author(s):  
Byoung Woong An ◽  
Pil-Hun Chang

<p>The Arctic Ocean is globally important for the weather and climate and has a unique environment. Therefore accurate prediction of the Arctic sea ice remains crucial in most numerical models. It is because small changes within the atmosphere or the ocean can cause major changes in the areal extent and thickness of the sea ice. Such changes, in turn, will have pronounced effects on the ocean and atmosphere through modification of the albedo, the ocean-atmosphere heat and momentum exchanges, and the ocean-ice heat and salt fluxes. The focus of this study is on the impact of such coupling on sea ice and upper ocean properties and the halostad related sea ice variations and inflows from Oceans. To assess the impact of the vertical mixing, we perform a set of sensitivity experiments with a global oceanic configuration at 1/4° resolution based on the version 4.0 of NEMO (Nucleus for European Modelling of the Ocean). In particular we examine the spatio-temporal distributions of Pacific and Eastern Arctic origin waters in the Chukchi Sea using 2016-2018 hydrographic data. Overall, the model agrees well with observations in terms of sea ice extent in spite of inaccurate vertical stratification of the water column. We conclude that beyond seasonal time scale forecast accuracy could be improved by more accurate representation of the structure of water masses.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Yingjie Wang ◽  
Na Liu ◽  
Zhanhai Zhang

Over the past few decades, the areal extent of the Arctic sea ice cover has decreased. During the winter of 2017, negative sea ice concentration anomalies occurred mainly in the Chukchi Sea and adjacent seas. The properties of Pacific water through the Bering Strait have changed in recent years. To highlight the role of the Pacific inflow during the 2017 Arctic sea ice retreat, we used mooring measurements and conductivity–temperature–depth (CTD) data to quantify the effect of inflow on sea ice in the Chukchi shelf. In September 2017, the temperature of the Pacific inflow was relatively high compared with the multi-year average, especially in the shelf north of 69°N where the temperature anomaly was generally greater than 1°C. The average heat content of each CTD station in September 2017 ranged from 0.77 to 1.58 GJ m–2, where each station was 0.25 GJ m–2 higher than the multi-year average. In the central shelf of the Chukchi Sea, the temperature of the 25–40 m layer increased after late May, and decreased after mid-September. The Pacific inflow could have provided a large amount of heat to the Chukchi shelf, the accumulated convective heat transported to the surface from September to October was approximately 1.68 × 1018 J and it impacted the sea ice growth conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cabrol Jory ◽  
Véronique Lesage ◽  
Alexandra Leclerc ◽  
Janie Giard ◽  
Sara Iverson ◽  
...  

AbstractThis study sought to estimate the effect of an anthropogenic and climate-driven change in prey availability on the degree of individual and population specialization of a large marine predator, the fin whale (Balaenoptera physalus). We examined skin biopsies from 99 fin whales sampled in the St. Lawrence Estuary (Canada) over a nine year period (1998–2006) during which environmental change was documented. We analyzed stable isotope ratios in skin and fatty acid signatures in blubber samples of whales, as well as in seven potential prey species, and diet was quantitatively assessed using Bayesian isotopic models. An abrupt change in fin whale dietary niche coincided with a decrease in biomass of their predominant prey, Arctic krill (Thysanoessa spp.). This dietary niche widening toward generalist diets occurred in nearly 60% of sampled individuals. The fin whale population, typically composed of specialists of either krill or lipid-rich pelagic fishes, shifted toward one composed either of krill specialists or true generalists feeding on various zooplankton and fish prey. This change likely reduced intraspecific competition. In the context of the current “Atlantification” of northern water masses, our findings emphasize the importance of considering individual-specific foraging tactics and not only population or group average responses when assessing population resilience or when implementing conservation measures.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


Sign in / Sign up

Export Citation Format

Share Document