scholarly journals A model-based approach to incorporate environmental variability into assessment of a commercial fishery: a case study with the American lobster fishery in the Gulf of Maine and Georges Bank

2019 ◽  
Vol 76 (4) ◽  
pp. 884-896 ◽  
Author(s):  
Kisei R Tanaka ◽  
Jie Cao ◽  
Burton V Shank ◽  
Samuel B Truesdell ◽  
Mackenzie D Mazur ◽  
...  

Abstract Changes in bottom-up forcing are fundamental drivers of fish population dynamics. Recent literature has highlighted the need to incorporate the role of dynamic environmental conditions in stock assessments as a key step towards adaptive fishery management. Combining a bioclimate envelope model and a population dynamic model, we propose a model-based approach that can incorporate ecosystem products into single-species stock assessments. The framework was applied to a commercially important American lobster (Homarus americanus) stock in the Northwest Atlantic. The bioclimate envelope model was used to hindcast temporal variability in a lobster recruitment habitat suitability index (HSI) using bottom temperature and salinity. The climate-driven HSI was used to inform the lobster recruitment dynamics within the size-structured population dynamics model. The performance of the assessment model with an environment-explicit recruitment function is evaluated by comparing relevant assessment outputs such as recruitment, annual fishing mortality, and magnitude of retrospective biases. The environmentally-informed assessment model estimated (i) higher recruitment and lower fishing mortality and (ii) reduced retrospective patterns. This analysis indicates that climate-driven changes in lobster habitat suitability contributed to increased lobster recruitment and present potential improvement to population assessment. Our approach is extendable to other stocks that are impacted by similar environmental variability.

2020 ◽  
Vol 77 (10) ◽  
pp. 1700-1710
Author(s):  
Cameron T. Hodgdon ◽  
Kisei R. Tanaka ◽  
Jocelyn Runnebaum ◽  
Jie Cao ◽  
Yong Chen

Stock assessments for a majority of the world’s fisheries often do not explicitly consider the effects of environmental conditions on target species, which can raise model uncertainty and potentially reduce forecasting quality. Model-based abundance indices were developed using a delta generalized linear mixed model that incorporates environmental variability for use in stock assessment to understand how the incorporation of environmental variability impacts our understanding of population dynamics. For this study, multiple model-based abundance indices were developed to test the incorporation of environmental covariates in a length-structured assessment of the American lobster (Homarus americanus) stock in the Gulf of Maine – Georges Bank on the possible improvement of stock assessment quality. Comparisons reveal that modelled indices with environmental covariates appear to be more precise than traditional indices, but model performance metrics and hindcasted fishery statuses revealed that these improvements to indices may not necessarily mean an improved assessment. Model-based abundance indices are not intrinsically better than design-based indices and should be tested for each species individually.


2020 ◽  
Vol 641 ◽  
pp. 159-175
Author(s):  
J Runnebaum ◽  
KR Tanaka ◽  
L Guan ◽  
J Cao ◽  
L O’Brien ◽  
...  

Bycatch remains a global problem in managing sustainable fisheries. A critical aspect of management is understanding the timing and spatial extent of bycatch. Fisheries management often relies on observed bycatch data, which are not always available due to a lack of reporting or observer coverage. Alternatively, analyzing the overlap in suitable habitat for the target and non-target species can provide a spatial management tool to understand where bycatch interactions are likely to occur. Potential bycatch hotspots based on suitable habitat were predicted for cusk Brosme brosme incidentally caught in the Gulf of Maine American lobster Homarus americanus fishery. Data from multiple fisheries-independent surveys were combined in a delta-generalized linear mixed model to generate spatially explicit density estimates for use in an independent habitat suitability index. The habitat suitability indices for American lobster and cusk were then compared to predict potential bycatch hotspot locations. Suitable habitat for American lobster has increased between 1980 and 2013 while suitable habitat for cusk decreased throughout most of the Gulf of Maine, except for Georges Basin and the Great South Channel. The proportion of overlap in suitable habitat varied interannually but decreased slightly in the spring and remained relatively stable in the fall over the time series. As Gulf of Maine temperatures continue to increase, the interactions between American lobster and cusk are predicted to decline as cusk habitat continues to constrict. This framework can contribute to fisheries managers’ understanding of changes in habitat overlap as climate conditions continue to change and alter where bycatch interactions could occur.


2017 ◽  
Vol 74 (5) ◽  
pp. 650-667 ◽  
Author(s):  
Stephen J. Smith ◽  
Jessica A. Sameoto ◽  
Craig J. Brown

Management for the major sea scallop (Placopecten magellanicus) fisheries in Canada is based on maximum sustainable yield (MSY) biomass and fishing mortality reference points applied to the whole stock, under the assumption that fishing mortality is uniformly distributed in space. However, scallop fishing vessels concentrate fishing in areas that consistently exhibit high densities resulting in a nonuniform spatial distribution of fishing effort. This study applies a spatial model for fishing effort derived from satellite vessel monitoring system data, scallop habitat suitability maps, and relative scallop density from a spatial stock assessment model to evaluate precautionary approach reference points in support of sustainable management. Target harvest rates were evaluated in terms of MSY for the higher habitat suitability areas. The results indicated that although MSY for the spatial model were similar to those when assuming a uniform distribution of effort, the biomass and catch rates over all areas were higher. The spatial model predicted that the MSY would be taken with less fishing effort, potentially lessening the benthic impacts from the scallop fishery.


2021 ◽  
Vol 238 ◽  
pp. 105899
Author(s):  
M. Conor McManus ◽  
Jeff Kipp ◽  
Burton Shank ◽  
Kathleen Reardon ◽  
Tracy L. Pugh ◽  
...  

2008 ◽  
Vol 59 (1) ◽  
pp. 41 ◽  
Author(s):  
Minoru Kanaiwa ◽  
Yong Chen ◽  
Carl Wilson

Many models of different complexities are developed for fisheries stock assessment, and yet few have been rigorously evaluated for their performance in capturing fisheries population dynamics. This causes confusion about when a model should be used or not in assessing fisheries resources. This is especially true for models with complex structures. The present study evaluated the performance of a seasonal, sex-specific and size-structured stock assessment model with respect to the temporal pattern of recruitment, observation errors associated with input data, process errors and violation of model assumptions for the American lobster Homarus americanus. Using an individual-based lobster simulator, a series of lobster fisheries with different characteristics were simulated and the model was applied to the simulated data to estimate key fisheries parameters. Estimated values were then compared with the true values in the simulated fisheries to evaluate the model’s ability to capture the temporal trend in stock abundance, biomass and recruitment, and to identify factors that might result in model failure. Results show that this newly developed lobster stock assessment model performs well in capturing the dynamics of the lobster population under a wide range of conditions. Temporal trends in natural mortality and biased estimates of growth parameters posed the most serious problems. The present study shows the importance of model evaluation.


2016 ◽  
Vol 557 ◽  
pp. 177-187 ◽  
Author(s):  
MD McMahan ◽  
DF Cowan ◽  
Y Chen ◽  
GD Sherwood ◽  
JH Grabowski

2021 ◽  
Vol 64 (7) ◽  
Author(s):  
Zhijie Zhou ◽  
You Cao ◽  
Guanyu Hu ◽  
Youmin Zhang ◽  
Shuaiwen Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document