scholarly journals Impaired Cellular Immune Responses During the First Week of Severe Acute Influenza Infection

2020 ◽  
Vol 222 (7) ◽  
pp. 1235-1244 ◽  
Author(s):  
Jackson S Turner ◽  
Tingting Lei ◽  
Aaron J Schmitz ◽  
Aaron Day ◽  
José Alberto Choreño-Parra ◽  
...  

Abstract Background Cellular immune responses are not well characterized during the initial days of acute symptomatic influenza infection. Methods We developed a prospective cohort of human subjects with confirmed influenza illness of varying severity who presented within a week after symptom onset. We characterized lymphocyte and monocyte populations as well as antigen-specific CD8+ T-cell and B-cell responses from peripheral blood mononuclear cells using flow cytometry and enzyme-linked immunospot assays. Results We recruited 68 influenza-infected individuals on average 3.5 days after the onset of symptoms. Three patients required mechanical ventilation. Influenza-specific CD8+ T-cell responses expanded before the appearance of plasmablast B cells. However, the influenza-specific CD8+ T-cell response was lower in infected subjects than responses seen in uninfected control subjects. Circulating populations of inflammatory monocytes were increased in most subjects compared with healthy controls. Inflammatory monocytes were significantly reduced in the 3 subjects requiring mechanical ventilation. Inflammatory monocytes were also reduced in a separate validation cohort of mechanically ventilated patients. Conclusions Antigen-specific CD8+ T cells respond early during acute influenza infection at magnitudes that are lower than responses seen in uninfected individuals. Circulating inflammatory monocytes increase during acute illness and low absolute numbers are associated with very severe disease.

2000 ◽  
Vol 97 (9) ◽  
pp. 4760-4765 ◽  
Author(s):  
E. Jager ◽  
Y. Nagata ◽  
S. Gnjatic ◽  
H. Wada ◽  
E. Stockert ◽  
...  

Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 126
Author(s):  
Lilin Lai ◽  
Nadine Rouphael ◽  
Yongxian Xu ◽  
Amy C. Sherman ◽  
Srilatha Edupuganti ◽  
...  

The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 424 ◽  
Author(s):  
Beatriz Perdiguero ◽  
Suresh C. Raman ◽  
Cristina Sánchez-Corzo ◽  
Carlos Oscar S. Sorzano ◽  
José Ramón Valverde ◽  
...  

An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.


Blood ◽  
2013 ◽  
Vol 121 (21) ◽  
pp. 4330-4339 ◽  
Author(s):  
Thushan I. de Silva ◽  
Yanchun Peng ◽  
Aleksandra Leligdowicz ◽  
Irfan Zaidi ◽  
Lucy Li ◽  
...  

Key PointsHIV-2 viral control is associated with a polyfunctional Gag-specific CD8+ T-cell response but not with perforin upregulation. Our findings provide insight into cellular immune responses associated with a naturally contained human retroviral infection.


Cell Reports ◽  
2021 ◽  
Vol 36 (11) ◽  
pp. 109708
Author(s):  
Hang Zhang ◽  
Shasha Deng ◽  
Liting Ren ◽  
Peiyi Zheng ◽  
Xiaowen Hu ◽  
...  

2021 ◽  
Author(s):  
◽  
Helen Mary Alys Simkins

<p>Dendritic cells (DC) play a pivotal role in the initiation of T cell responses and earlier studies have shown that their survival is important for the generation of effective immune responses. Cytotoxic T lymphocytes (CTL) and natural killer T (NKT) cells have been proposed to regulate the survival of antigen presenting DC through their ability to kill cells expressing specific antigen via secretion of perforin, a protein contained in cytotoxic granules. Perforin knockout (PKO) mice generate amplified immune responses to DC immunization, suggesting a link between defective cytotoxicity and increased T cell responses. The studies in this thesis used PKO mice and in vivo models of CD8+T cells and NKT cell immune responses to determine whether CTL and NKT cells eliminate DC in a perforin-dependent manner, and whether DC elimination is a mechanism to regulate T cell responses. During a primary influenza infection C57BL/6 and PKO mice generated a similar influenza specific CD8+ immune response. No significant difference in the percentage of influenza epitope PA224-233 specific T cells was observed between C57BL/6 and PKO mice during a secondary influenza infection, but PKO mice had a significantly reduced T cell response directed towards the dominant influenza epitope, NP366-374. The reduced T cell response in PKO mice was not due to differences in activation or differentiation status of specific T cells compared to C57BL/6 mice. Therefore, the extended DC survival in PKO after secondary influenza viral infection, recently reported by other authors, does not appear to correlate with increased expansion of virus specific CD8+T cells in infected mice. The role of NKT cells in DC elimination was assessed in vivo using the NKT cell ligand a-Galactosylceramide (a-GalCer). Injection of a-GalCer in C57BL/6 mice induced a dramatic decline in the number of splenic CD8+DC. A similar decrease in CD8+DC numbers was observed in PKO mice, suggesting that the mechanism of DC loss did not involve perforinmediated killing. In contrast, treatment with a TNF-a neutralizing antibody substantially reduced the decline in CD8+DC numbers. This reduction in splenic CD8+DC occurred as early as 15 hr after a-GalCer treatment, and did not affect generation of CD8+T cell responses or the ability of a-GalCer treatment to provide tumour protection. Taken together, these results suggest that multiple cells and mechanisms can regulate DC survival in vivo. CTL regulate DC survival in vivo in a perforin-dependent manner, but this does not necessarily affect the magnitude of the resulting immune responses. NKT cells also affect the survival of DC in vivo, but in a perforin-independent, cytokine-dependent manner. These findings provide additional knowledge about the in vivo involvement of perforin in regulating DC survival by CTL and NKT cells and the effects this has on T cell responses.</p>


2021 ◽  
Author(s):  
◽  
Helen Mary Alys Simkins

<p>Dendritic cells (DC) play a pivotal role in the initiation of T cell responses and earlier studies have shown that their survival is important for the generation of effective immune responses. Cytotoxic T lymphocytes (CTL) and natural killer T (NKT) cells have been proposed to regulate the survival of antigen presenting DC through their ability to kill cells expressing specific antigen via secretion of perforin, a protein contained in cytotoxic granules. Perforin knockout (PKO) mice generate amplified immune responses to DC immunization, suggesting a link between defective cytotoxicity and increased T cell responses. The studies in this thesis used PKO mice and in vivo models of CD8+T cells and NKT cell immune responses to determine whether CTL and NKT cells eliminate DC in a perforin-dependent manner, and whether DC elimination is a mechanism to regulate T cell responses. During a primary influenza infection C57BL/6 and PKO mice generated a similar influenza specific CD8+ immune response. No significant difference in the percentage of influenza epitope PA224-233 specific T cells was observed between C57BL/6 and PKO mice during a secondary influenza infection, but PKO mice had a significantly reduced T cell response directed towards the dominant influenza epitope, NP366-374. The reduced T cell response in PKO mice was not due to differences in activation or differentiation status of specific T cells compared to C57BL/6 mice. Therefore, the extended DC survival in PKO after secondary influenza viral infection, recently reported by other authors, does not appear to correlate with increased expansion of virus specific CD8+T cells in infected mice. The role of NKT cells in DC elimination was assessed in vivo using the NKT cell ligand a-Galactosylceramide (a-GalCer). Injection of a-GalCer in C57BL/6 mice induced a dramatic decline in the number of splenic CD8+DC. A similar decrease in CD8+DC numbers was observed in PKO mice, suggesting that the mechanism of DC loss did not involve perforinmediated killing. In contrast, treatment with a TNF-a neutralizing antibody substantially reduced the decline in CD8+DC numbers. This reduction in splenic CD8+DC occurred as early as 15 hr after a-GalCer treatment, and did not affect generation of CD8+T cell responses or the ability of a-GalCer treatment to provide tumour protection. Taken together, these results suggest that multiple cells and mechanisms can regulate DC survival in vivo. CTL regulate DC survival in vivo in a perforin-dependent manner, but this does not necessarily affect the magnitude of the resulting immune responses. NKT cells also affect the survival of DC in vivo, but in a perforin-independent, cytokine-dependent manner. These findings provide additional knowledge about the in vivo involvement of perforin in regulating DC survival by CTL and NKT cells and the effects this has on T cell responses.</p>


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 552-552 ◽  
Author(s):  
Geoffrey L. Rogers ◽  
Roland W Herzog

Abstract CD8+ T cell responses to the adeno-associated virus (AAV) capsid have posed a significant barrier to transduction in clinical trials of AAV-mediated gene therapy for hemophilia B, as reactivation of a memory CTL response to the capsid is capable of eliminating transduced hepatocytes in the absence of immunosuppression. Recently, it has been suggested that innate immune responses induced by the toll-like receptor (TLR) pathway can influence the development of adaptive immune responses to AAV-mediated gene transfer. In particular, reports have implicated TLR2 (AAV capsid), TLR9 (AAV genome), and MyD88 (downstream signaling adaptor of both these TLRs). Herein, we have used a modified AAV2 with an insertion of the immunodominant MHC class I epitope of ovalbumin into the capsid (AAV2-SIINFEKL) to study the mechanism of CD8+ T cell responses to the AAV capsid. Using an H2-Kb-SIINFEKL tetramer reagent, we determined that anti-capsid CD8+ T cell responses depended on the TLR9-MyD88 pathway. While the frequency of circulating capsid-specific CD8+ T cells peaked around 7-10 days post-injection and subsided after about 21 days in wild type (WT) mice, tetramer-positive cells were not detected in TLR9-/- or MyD88-/- mice. The kinetics and magnitude of the response was unaltered in TLR2-/- mice. Mice deficient in STING, a downstream adaptor of multiple cytoplasmic DNA sensing pathways, also developed comparable capsid-specific CD8+ T cell frequencies to WT mice, suggesting that this is not a general effect of pattern recognition of DNA. Interestingly, the frequency of capsid-specific CD8+ T cells was not reduced in AP3-/- mice, which are deficient in type I IFN signaling downstream of TLR9. Adoptively transferred OVA-specific OT-1 T cells proliferated in WT but not TLR9-/- mice that received AAV2-SIINFEKL, confirming the importance of TLR9. The effect was antigen-specific, as OT-1 cells in WT mice that received AAV2 lacking SIINFEKL showed minimal proliferation comparable to TLR9-/- mice. In addition to pattern-recognition receptors, we also assessed the role of antigen-presenting cells in the CD8+ T cell response to capsid. The formation of capsid-specific CD8+ T cells was unaltered in mice that received gadolinium chloride to inactivate macrophages, or in B cell-deficient μMT mice. Depletion of B cells in WT mice prior to vector administration also failed to affect the anti-capsid CD8+ T cell response. However, transient depletion of dendritic cells (DCs) in CD11c-DTR mice resulted in a delayed development of capsid-specific CD8+ T cells. Seven days post-injection, DC-depleted mice had a significantly reduced frequency of tetramer-positive CD8+ T cells which recovered to normal by 10 days, likely due to the repopulation of DCs before the input capsid was completely cleared. Overall, our results show that TLR9 signaling, most likely in DCs, is required for the formation of de novo anti-capsid CD8+ T cell responses. Disclosures Herzog: Genzyme: AAV-FIX technology Patents & Royalties.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 26 ◽  
Author(s):  
Georgia Kalodimou ◽  
Svenja Veit ◽  
Sylvia Jany ◽  
Ulrich Kalinke ◽  
Christopher C. Broder ◽  
...  

Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA–NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR−/−) mice after vaccination with the MVA–NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA–NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3185-3185
Author(s):  
E. Dobrzynski ◽  
F. Mingozzi ◽  
L. Wang ◽  
B. Mingle ◽  
O. Cao ◽  
...  

Abstract The use of gene replacement therapy is an attractive approach for the treatment of the genetic bleeding disorder hemophilia B (caused by mutations in the coagulation factor IX, FIX, gene). A major concern with this type of procedure is the potential for a host immune response to the therapeutic gene product, which would render treatment ineffective. Previously, we observed inflammatory, cytotoxic T lymphocyte, and antibody responses to a human FIX (hFIX) transgene product after intramuscular (IM) delivery via an E1/E3-deleted adenoviral vector (Ad-hFIX) in C57BL/6 mice. Different from this Th1-biased immune response, IM injection of adeno-associated viral (AAV) vector, a Th2-biased, non-inflammatory response led to antibody-mediated neutralization of hFIX expression, without CTL activation. In contrast to these observations on muscle-directed vector administration, hepatic AAV-hFIX gene transfer induced immune tolerance to the transgene product (JCI 111:1347). Lack of anti-hFIX formation was demonstrated even after challenge with hFIX in adjuvant. In order to examine the effect of tolerance induction on CD8+ T cell-mediated cellular immune responses, we performed the following experiments. C57BL/6 mice (n=4 per experimental group) received IM injections of AAV-hFIX vector (serotype 1) in one hind limb and/or Ad-hFIX vector in the contra-lateral leg. In the latter case, inflammation (as determined by H&E histological evaluation), CD8+ T cell infiltrate and destruction of hFIX expressing muscle fibers were obvious in both legs because of the Ad-hFIX mediated activation of CTL to hFIX. CD8+ T cell responses were strongest in Ad-hFIX transduced muscle at day 14 and in the AAV-hFIX leg at day 30. Expression of hFIX as determined by immunohistochemistry became undetectable in Ad-hFIX injected muscle by day 30, but was not completely eliminated in AAV-hFIX transduced muscle. Injection of AAV-hFIX only, did not cause inflammation of muscle tissue or CD8+ cell infiltrate. When the identical experiment was carried out in C57BL/6 mice that were expressing hFIX from hepatic gene transfer via the AAV serotype 2 vector (performed 6 weeks earlier), a substantial increase in systemic hFIX expression was observed after IM administration of the Ad and AAV-1 vectors (again injected into contra-lateral legs). However, a portion of the increased expression was subsequently lost, which correlated with inflammation and CD8+ T cell infiltrate of the Ad-hFIX transduced muscle. Interestingly, no (3/4 mice) or only minor (1/4 mice) infiltrate was observed in AAV-hFIX injected muscles. Consequently, hFIX expression persisted in the AAV, but not the Ad transduced legs. Presumably, CTL responses to adenoviral antigens were sufficient to target Ad-hFIX transduced muscle despite tolerance to the transgene product. In contrast to control mice, hepatic tolerized animals failed to form anti-hFIX after challenge by IM injection of these viral vectors. Moreover, inflammatory and destructive cellular immune responses to the transgene product were successfully prevented by hepatic tolerance induction, indicating that tolerance induced by gene transfer to the liver affects cellular as well as antibody-mediated responses and extents to tissues other than liver.


Sign in / Sign up

Export Citation Format

Share Document