scholarly journals Aerolysin From Aeromonas hydrophila Perturbs Tight Junction Integrity and Cell Lesion Repair in Intestinal Epithelial HT-29/B6 Cells

2011 ◽  
Vol 204 (8) ◽  
pp. 1283-1292 ◽  
Author(s):  
Roland Bücker ◽  
Susanne M. Krug ◽  
Rita Rosenthal ◽  
Dorothee Günzel ◽  
Anja Fromm ◽  
...  
2019 ◽  
Author(s):  
JM Robinson

AbstractThis brief report details results from a comparative analysis of Nanostring expression data between cell lines HEPG2, Caco-2, HT-29, and colon fibroblasts. Raw and normalized data are available publicly in the NCBI GEO/Bioproject databases. Results identify cell-line specific variations in gene expression relevant to intestinal epithelial function.


2005 ◽  
Vol 73 (5) ◽  
pp. 2628-2643 ◽  
Author(s):  
C. L. Galindo ◽  
A. A. Fadl ◽  
Jian Sha ◽  
L. Pillai ◽  
C. Gutierrez ◽  
...  

ABSTRACT We performed microarray analyses on RNA from human intestinal epithelial (HT-29) cells treated with the cytotoxic enterotoxin (Act) of Aeromonas hydrophila to examine global cellular transcriptional responses. Based on three independent experiments, Act upregulated the expression of 34 genes involved in cell growth, adhesion, signaling, immune responses (including interleukin-8 [IL-8] production), and apoptosis. We verified the upregulation of 14 genes by real-time reverse transcriptase-PCR and confirmed Act-induced production of IL-8 by enzyme-linked immunosorbent assay on supernatants from nonpolarized and polarized HT-29 cells. Maximal production of IL-8 in response to Act required the presence of intracellular calcium, since chelation of calcium with BAPTA-AM significantly reduced Act-induced IL-8 production in HT-29 cells. We also examined activation of mitogen-activated protein kinases and, as demonstrated by Western blot analysis of apical side-treated polarized HT-29 cells, Act induced phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase 1/2. In addition, KinetWorks proteomics screening of whole-cell lysates revealed Act-induced phosphorylation of cyclic AMP-response element binding protein (CREB), c-Jun, adducin, protein kinase C, and signal transducer and activator of transcription 3 (STAT3) and decreased phosphorylation of protein kinase Bα, v-raf-1 murine leukemia viral oncogene homolog 1 (i.e., Raf1), and STAT1. We verified activation of CREB and activator protein 1 in polarized cells by gel shift assay. This is the first description of human intestinal epithelial cell transcriptional alterations, phosphorylation or activation of signaling molecules, cytokine production, and calcium mobilization in response to this toxin.


2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


2013 ◽  
Vol 305 (10) ◽  
pp. G740-G748 ◽  
Author(s):  
Mihaela Pruteanu ◽  
Fergus Shanahan

The enteric microbiota contributes to the pathogenesis of inflammatory bowel disease, but the pathways involved and bacterial participants may vary in different hosts. We previously reported that some components of the human commensal microbiota, particularly Clostridium perfringens ( C. perfringens), have the proteolytic capacity for host matrix degradation and reduce transepithelial resistance. Here, we examined the C. perfringens-derived proteolytic activity against epithelial tight junction proteins using human intestinal epithelial cell lines. We showed that the protein levels of E-cadherin, occludin, and junctional adhesion molecule 1 decrease in colonic cells treated with C. perfringens culture supernatant. E-cadherin ectodomain shedding in C. perfringens-stimulated intestinal epithelial cells was detected with antibodies against the extracellular domain of E-cadherin, and we demonstrate that this process occurs in a time- and dose-dependent manner. In addition, we showed that the filtered sterile culture supernatant of C. perfringens has no cytotoxic activity on the human intestinal cells at the concentrations used in this study. The direct cleavage of E-cadherin by the proteases from the C. perfringens culture supernatant was confirmed by C. perfringens supernatant-induced in vitro degradation of the human recombinant E-cadherin. We conclude that C. perfringens culture supernatant mediates digestion of epithelial cell junctional proteins, which is likely to enable access to the extracellular matrix components by the paracellular pathway.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S25-S25
Author(s):  
Li Zuo ◽  
Feng Cao ◽  
Wei-Ting Kuo ◽  
Jerrold Turner

Abstract Background Tumor necrosis factor (TNF) regulates intestinal epithelial tight junction permeability by activating myosin light chain kinase 1 (MLCK1) expression and enzymatic activity. MLCK1 recruitment to the apical perijunctional actomyosin ring (PAMR) is, however, required for barrier regulation; Divertin, a small molecule drug that blocks this recruitment, prevents barrier loss and attenuates both acute and chronic experimental diarrheal disease. We therefore hypothesized that MLCK1 recruitment to the PAMR requires interactions with as yet unidentified chaperone protein(s). Objective To identify binding partners and define the mechanisms by which they activate MLCK1 recruitment to the PAMR. Results We performed a yeast-2-hybrid (Y2H) screen using the MLCK1 domains required for PAMR recruitment as bait. FKBP8, which encodes a peptidyl-prolyl cis-trans isomerase (PPI), was recovered, and direct binding to the MLCK1 domains (Kd=~5mM) was confirmed using microscale thermophoresis (MST). This binding interaction required the FK506-binding PPI domain and was specifically inhibited by FK506 (tacrolimus). Immunofluorescent microscopy demonstrated partial colocalization of MLCK1 and FKBP8 within intestinal epithelial monolayers; TNF caused both to concentrate around the PAMR. To further characterize this interaction, we performed proximity ligation assays (PLA) and found that TNF increased interaction between MLCK1 and FKBP8 > 2-fold. FK506 prevented TNF-induced increases in PLA signal. FK506 was also able to reverse TNF-induced increases in myosin light chain (MLC) phosphorylation and tight junction permeability. In Caco-2 monolayers, FKBP8 knockout blocked TNF-induced MLCK1 recruitment, MLC phosphorylation, and tight junction barrier loss; all of which were restored by FKBP8 re-expression. In mice, MLC phosphorylation and intestinal barrier loss triggered by acute, anti-CD3-induced, T cell activation were blocked by luminal FK506. Importantly, this local FK506 treatment did not prevent anti-CD3-induced increases in mucosal TNF, IL-1b, and IFNg. Immunostains of biopsies from IBD patients documented increased PAMR MLC phosphorylation, MLCK1 recruitment, FKBP8 recruitment, and MLCK1-FKBP8 PLA signal relative to control subjects. Conclusions FKBP8 is a chaperone protein required for TNF-induced MLCK1 recruitment and barrier loss. This requires direct interaction between MLCK1 and the PPI domain of FKBP8. FK506 binding to the PPI domain displaces MLCK1 thereby preventing recruitment to the PAMR and barrier loss. These activities are separate from the immunosuppressive effects of FK506. We speculate that molecular blockade of the FKBP8-MLCK1 interaction may be a novel approach to barrier restoration and therapy of diseases associated with intestinal barrier dysfunction. Support NIH (DK068271, DK061931) and the NNSF of China (81800464, 82070548).


Sign in / Sign up

Export Citation Format

Share Document