scholarly journals Porcine Prion Protein as a Paradigm of Limited Susceptibility to Prion Strain Propagation

Author(s):  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
Patricia Aguilar-Calvo ◽  
Sylvie L Benestad ◽  
Olivier Andreoletti ◽  
...  

Abstract Although experimental transmission of bovine spongiform encephalopathy (BSE) to pigs and transgenic mice expressing pig cellular prion protein (PrPC) (porcine PrP [PoPrP]–Tg001) has been described, no natural cases of prion diseases in pig were reported. This study analyzed pig-PrPC susceptibility to different prion strains using PoPrP-Tg001 mice either as animal bioassay or as substrate for protein misfolding cyclic amplification (PMCA). A panel of isolates representatives of different prion strains was selected, including classic and atypical/Nor98 scrapie, atypical-BSE, rodent scrapie, human Creutzfeldt-Jakob-disease and classic BSE from different species. Bioassay proved that PoPrP-Tg001-mice were susceptible only to the classic BSE agent, and PMCA results indicate that only classic BSE can convert pig-PrPC into scrapie-type PrP (PrPSc), independently of the species origin. Therefore, conformational flexibility constraints associated with pig-PrP would limit the number of permissible PrPSc conformations compatible with pig-PrPC, thus suggesting that pig-PrPC may constitute a paradigm of low conformational flexibility that could confer high resistance to the diversity of prion strains.

2020 ◽  
Vol 21 (19) ◽  
pp. 7260
Author(s):  
Keiji Uchiyama ◽  
Hironori Miyata ◽  
Yoshitaka Yamaguchi ◽  
Morikazu Imamura ◽  
Mariya Okazaki ◽  
...  

Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91–106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91–106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91–106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91–106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91–106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91–104 after incubation with BSE-PrPSc-prions but not with RML- and 22L–PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91–104 into PrPSc∆91–104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91–106 or 91–104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.


2019 ◽  
Vol 53 (1) ◽  
pp. 117-147 ◽  
Author(s):  
Simon Mead ◽  
Sarah Lloyd ◽  
John Collinge

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene ( PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non- PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Suzana Aulić ◽  
Maria Laura Bolognesi ◽  
Giuseppe Legname

Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated,β-sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrPC). Many lines of evidence suggest that prions (PrPSc) act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such,PrPScmay be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer’s disease, Parkinson’s disease, and prion disease). Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2453
Author(s):  
Zoe J. Lambert ◽  
Justin J. Greenlee ◽  
Eric D. Cassmann ◽  
M. Heather West Greenlee

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.


2008 ◽  
Vol 416 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Sabrina Cronier ◽  
Nathalie Gros ◽  
M. Howard Tattum ◽  
Graham S. Jackson ◽  
Anthony R. Clarke ◽  
...  

Disease-related PrPSc [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrPC(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrPSc using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrPSc in its full-length form. In the present study, we show that thermolysin can degrade PrPC while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt–Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only ∼15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.


2020 ◽  
Vol 295 (15) ◽  
pp. 4985-5001 ◽  
Author(s):  
Camilo Duque Velásquez ◽  
Chae Kim ◽  
Tracy Haldiman ◽  
Chiye Kim ◽  
Allen Herbst ◽  
...  

Chronic wasting disease (CWD) is caused by an unknown spectrum of prions and has become enzootic in populations of cervid species that express cellular prion protein (PrPC) molecules varying in amino acid composition. These PrPC polymorphisms can affect prion transmission, disease progression, neuropathology, and emergence of new prion strains, but the mechanistic steps in prion evolution are not understood. Here, using conformation-dependent immunoassay, conformation stability assay, and protein-misfolding cyclic amplification, we monitored the conformational and phenotypic characteristics of CWD prions passaged through deer and transgenic mice expressing different cervid PrPC polymorphisms. We observed that transmission through hosts with distinct PrPC sequences diversifies the PrPCWD conformations and causes a shift toward oligomers with defined structural organization, replication rate, and host range. When passaged in host environments that restrict prion replication, distinct co-existing PrPCWD conformers underwent competitive selection, stabilizing a new prion strain. Nonadaptive conformers exhibited unstable replication and accumulated only to low levels. These results suggest a continuously evolving diversity of CWD conformers and imply a critical interplay between CWD prion plasticity and PrPC polymorphisms during prion strain evolution.


Author(s):  
Patrick JM Urwin ◽  
Anna M Molesworth

Human prion diseases comprise a number of rare and fatal neurodegenerative conditions that result from the accumulation in the central nervous system of an abnormal form of a naturally occurring protein, called the prion protein. The diseases occur in genetic, sporadic, and acquired forms: genetic disease is associated with mutations in the prion protein gene (PRNP); sporadic disease is thought to result from a spontaneous protein misfolding event; acquired disease results from transmission of infection from an animal or another human. The potential transmissibility of the prion in any of these forms, either in disease states or during the incubation period, has implications for public health. Here we focus on Creutzfeldt-Jakob Disease (CJD), including variant Creutzfeldt-Jakob Disease (vCJD), although we will also discuss other forms of human prion disease.


2016 ◽  
Vol 90 (23) ◽  
pp. 10752-10761 ◽  
Author(s):  
Kristen A. Davenport ◽  
Davin M. Henderson ◽  
Candace K. Mathiason ◽  
Edward A. Hoover

ABSTRACT Chronic wasting disease (CWD) in cervids and bovine spongiform encephalopathy (BSE) in cattle are prion diseases that are caused by the same protein-misfolding mechanism, but they appear to pose different risks to humans. We are interested in understanding the differences between the species barriers of CWD and BSE. We used real-time, quaking-induced conversion (RT-QuIC) to model the central molecular event in prion disease, the templated misfolding of the normal prion protein, PrP c , to a pathogenic, amyloid isoform, scrapie prion protein, PrP Sc . We examined the role of the PrP c amino-terminal domain (N-terminal domain [NTD], amino acids [aa] 23 to 90) in cross-species conversion by comparing the conversion efficiency of various prion seeds in either full-length (aa 23 to 231) or truncated (aa 90 to 231) PrP c . We demonstrate that the presence of white-tailed deer and bovine NTDs hindered seeded conversion of PrP c , but human and bank vole NTDs did the opposite. Additionally, full-length human and bank vole PrP c s were more likely to be converted to amyloid by CWD prions than were their truncated forms. A chimera with replacement of the human NTD by the bovine NTD resembled human PrP c . The requirement for an NTD, but not for the specific human sequence, suggests that the NTD interacts with other regions of the human PrP c to increase promiscuity. These data contribute to the evidence that, in addition to primary sequence, prion species barriers are controlled by interactions of the substrate NTD with the rest of the substrate PrP c molecule. IMPORTANCE We demonstrate that the amino-terminal domain of the normal prion protein, PrP c , hinders seeded conversion of bovine and white-tailed deer PrP c s to the prion forms, but it facilitates conversion of the human and bank vole PrP c s to the prion forms. Additionally, we demonstrate that the amino-terminal domain of human and bank vole PrP c s requires interaction with the rest of the molecule to facilitate conversion by CWD prions. These data suggest that interactions of the amino-terminal domain with the rest of the PrP c molecule play an important role in the susceptibility of humans to CWD prions.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Sílvia Sisó ◽  
Lorenzo González ◽  
Martin Jeffrey

Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.


2007 ◽  
Vol 88 (10) ◽  
pp. 2905-2914 ◽  
Author(s):  
Victoria A. Lawson ◽  
James D. Stewart ◽  
Colin L. Masters

The unconventional nature of the infectious agent of prion diseases poses a challenge to conventional infection control methodologies. The extraneural tissue distribution of variant and sporadic Creutzfeldt–Jakob disease has increased concern regarding the risk of prion disease transmission via general surgical procedures and highlighted the need for decontamination procedures that can be incorporated into routine processing. In this study, the ability of preparations of enzymatic medical instrument cleaners to reduce the infectivity associated with a rodent-adapted strain of human prion disease, previously reported to be resistant to decontamination, was tested. Efficient degradation of the disease-associated prion protein by enzymatic cleaning preparations required high treatment temperatures (50–60 °C). Standard decontamination methods (1 M NaOH for 1 h or autoclaving at 134 °C for 18 min) reduced infectivity associated with the human-derived prion strain by less than 3 log10 LD50. In contrast, a 30 min treatment with the optimized enzymatic cleaning preparation protocols reduced infectivity by more than 3 log10 LD50 and when used in conjunction with autoclave cycles eliminated detectable levels of infectivity. The development of prion decontamination procedures that are compatible with routine cleaning and sterilization of medical and surgical instruments may reduce the risk of the transmission of prion disease in general surgery.


Sign in / Sign up

Export Citation Format

Share Document