Genetic Factors in Mammalian Prion Diseases

2019 ◽  
Vol 53 (1) ◽  
pp. 117-147 ◽  
Author(s):  
Simon Mead ◽  
Sarah Lloyd ◽  
John Collinge

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene ( PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non- PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.

Author(s):  
Patrick JM Urwin ◽  
Anna M Molesworth

Human prion diseases comprise a number of rare and fatal neurodegenerative conditions that result from the accumulation in the central nervous system of an abnormal form of a naturally occurring protein, called the prion protein. The diseases occur in genetic, sporadic, and acquired forms: genetic disease is associated with mutations in the prion protein gene (PRNP); sporadic disease is thought to result from a spontaneous protein misfolding event; acquired disease results from transmission of infection from an animal or another human. The potential transmissibility of the prion in any of these forms, either in disease states or during the incubation period, has implications for public health. Here we focus on Creutzfeldt-Jakob Disease (CJD), including variant Creutzfeldt-Jakob Disease (vCJD), although we will also discuss other forms of human prion disease.


2005 ◽  
Vol 27 (4) ◽  
pp. 6-8
Author(s):  
David R. Brown

Prion diseases are neurodegenerative diseases1 that have been linked together because they may potentially have the same cause. These include the diseases scrapie of sheep and BSE (bovine spongiform encephalopathy) of cattle, and also several human diseases that include sporadic CJD (Creutzfeldt-Jakob) disease and a variety of inherited forms. The inherited forms of prion diseases are linked to mutations within the gene for the prion protein. Around 85% of all human cases of prion disease are sporadic CJD, which is a disease affecting people of around 60 years of age. The cause of this disease remains unknown. Unfortunately, the name of this disease causes some confusion, as it is similar to vCJD (variant CJD), a related disease of much younger people.


Author(s):  
Christina J. Sigurdson ◽  
Jason C. Bartz ◽  
Markus Glatzel

Prion diseases are rapidly progressive, incurable neurodegenerative disorders caused by misfolded, aggregated proteins known as prions, which are uniquely infectious. Remarkably, these infectious proteins have been responsible for widespread disease epidemics, including kuru in humans, bovine spongiform encephalopathy in cattle, and chronic wasting disease in cervids, the latter of which has spread across North America and recently appeared in Norway and Finland. The hallmark histopathological features include widespread spongiform encephalopathy, neuronal loss, gliosis, and deposits of variably sized aggregated prion protein, ranging from small, soluble oligomers to long, thin, unbranched fibrils, depending on the disease. Here, we explore recent advances in prion disease research, from the function of the cellular prion protein to the dysfunction triggering neurotoxicity, as well as mechanisms underlying prion spread between cells. We also highlight key findings that have revealed new therapeutic targets and consider unanswered questions for future research.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2453
Author(s):  
Zoe J. Lambert ◽  
Justin J. Greenlee ◽  
Eric D. Cassmann ◽  
M. Heather West Greenlee

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.


Author(s):  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
Patricia Aguilar-Calvo ◽  
Sylvie L Benestad ◽  
Olivier Andreoletti ◽  
...  

Abstract Although experimental transmission of bovine spongiform encephalopathy (BSE) to pigs and transgenic mice expressing pig cellular prion protein (PrPC) (porcine PrP [PoPrP]–Tg001) has been described, no natural cases of prion diseases in pig were reported. This study analyzed pig-PrPC susceptibility to different prion strains using PoPrP-Tg001 mice either as animal bioassay or as substrate for protein misfolding cyclic amplification (PMCA). A panel of isolates representatives of different prion strains was selected, including classic and atypical/Nor98 scrapie, atypical-BSE, rodent scrapie, human Creutzfeldt-Jakob-disease and classic BSE from different species. Bioassay proved that PoPrP-Tg001-mice were susceptible only to the classic BSE agent, and PMCA results indicate that only classic BSE can convert pig-PrPC into scrapie-type PrP (PrPSc), independently of the species origin. Therefore, conformational flexibility constraints associated with pig-PrP would limit the number of permissible PrPSc conformations compatible with pig-PrPC, thus suggesting that pig-PrPC may constitute a paradigm of low conformational flexibility that could confer high resistance to the diversity of prion strains.


2021 ◽  
Vol 134 (17) ◽  
Author(s):  
Caihong Zhu ◽  
Adriano Aguzzi

ABSTRACT Prion diseases are neurodegenerative disorders caused by conformational conversion of the cellular prion protein (PrPC) into scrapie prion protein (PrPSc). As the main component of prion, PrPSc acts as an infectious template that recruits and converts normal cellular PrPC into its pathogenic, misfolded isoform. Intriguingly, the phenomenon of prionoid, or prion-like, spread has also been observed in many other disease-associated proteins, such as amyloid β (Aβ), tau and α-synuclein. This Cell Science at a Glance and the accompanying poster highlight recently described physiological roles of prion protein and the advanced understanding of pathogenesis of prion disease they have afforded. Importantly, prion protein may also be involved in the pathogenesis of other neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therapeutic studies of prion disease have also exploited novel strategies to combat these devastating diseases. Future studies on prion protein and prion disease will deepen our understanding of the pathogenesis of a broad spectrum of neurodegenerative conditions.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Sílvia Sisó ◽  
Lorenzo González ◽  
Martin Jeffrey

Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.


2007 ◽  
Vol 88 (10) ◽  
pp. 2905-2914 ◽  
Author(s):  
Victoria A. Lawson ◽  
James D. Stewart ◽  
Colin L. Masters

The unconventional nature of the infectious agent of prion diseases poses a challenge to conventional infection control methodologies. The extraneural tissue distribution of variant and sporadic Creutzfeldt–Jakob disease has increased concern regarding the risk of prion disease transmission via general surgical procedures and highlighted the need for decontamination procedures that can be incorporated into routine processing. In this study, the ability of preparations of enzymatic medical instrument cleaners to reduce the infectivity associated with a rodent-adapted strain of human prion disease, previously reported to be resistant to decontamination, was tested. Efficient degradation of the disease-associated prion protein by enzymatic cleaning preparations required high treatment temperatures (50–60 °C). Standard decontamination methods (1 M NaOH for 1 h or autoclaving at 134 °C for 18 min) reduced infectivity associated with the human-derived prion strain by less than 3 log10 LD50. In contrast, a 30 min treatment with the optimized enzymatic cleaning preparation protocols reduced infectivity by more than 3 log10 LD50 and when used in conjunction with autoclave cycles eliminated detectable levels of infectivity. The development of prion decontamination procedures that are compatible with routine cleaning and sterilization of medical and surgical instruments may reduce the risk of the transmission of prion disease in general surgery.


2005 ◽  
Vol 86 (9) ◽  
pp. 2635-2644 ◽  
Author(s):  
Azadeh Khalili-Shirazi ◽  
Linda Summers ◽  
Jacqueline Linehan ◽  
Gary Mallinson ◽  
David Anstee ◽  
...  

Prion diseases involve conversion of host-encoded cellular prion protein (PrPC) to a disease-related isoform (PrPSc). Using recombinant human β-PrP, a panel of monoclonal antibodies was produced that efficiently immunoprecipitated native PrPSc and recognized epitopes between residues 93–105, indicating for the first time that this region is exposed in both human vCJD and mouse RML prions. In contrast, monoclonal antibodies raised to human α-PrP were more efficient in immunoprecipitating PrPC than PrPSc, and some of them could also distinguish between different PrP glycoforms. Using these monoclonal antibodies, the physical association of PrP glycoforms was studied in normal brain and in the brains of humans and mice with prion disease. It was shown that while PrPC glycoforms can be selectively immunoprecipitated, the differentially glycosylated molecules of native PrPSc are closely associated and always immunoprecipitate together. Furthermore, the ratio of glycoforms comprising immunoprecipitated native PrPSc from diverse prion strains was similar to those observed on denaturing Western blots. These studies are consistent with the view that the proportion of each glycoform incorporated into PrPSc is probably controlled in a strain-specific manner and that each PrPSc particle contains a mixture of glycoforms.


2006 ◽  
Vol 81 (6) ◽  
pp. 2831-2837 ◽  
Author(s):  
Eric M. Norstrom ◽  
Mark F. Ciaccio ◽  
Benjamin Rassbach ◽  
Robert Wollmann ◽  
James A. Mastrianni

ABSTRACT Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrPSc), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrPC exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrPC is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp +/+ ) mice with PrP-ablated mice (TgPrnp o/o) to generate Tg1D4(Prnp o/o) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp +/+ ) and Tg1D4(Prnp o/o) mice, suggesting that cyPrP and PrPC function independently in the disease state. Additionally, Tg1D4(Prnp o/o) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrPSc. We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrPC and the generation of typical prion disease.


Sign in / Sign up

Export Citation Format

Share Document