Oxygenation as a driving factor in epithelial differentiation at the air–liquid interface

2021 ◽  
Vol 13 (3) ◽  
pp. 61-72
Author(s):  
Sonya Kouthouridis ◽  
Julie Goepp ◽  
Carolina Martini ◽  
Elizabeth Matthes ◽  
John W Hanrahan ◽  
...  

Abstract Culture at the air–liquid interface is broadly accepted as necessary for differentiation of cultured epithelial cells towards an in vivo-like phenotype. However, air–liquid interface cultures are expensive, laborious and challenging to scale for increased throughput applications. Deconstructing the microenvironmental parameters that drive these differentiation processes could circumvent these limitations, and here we hypothesize that reduced oxygenation due to diffusion limitations in liquid media limits differentiation in submerged cultures; and that this phenotype can be rescued by recreating normoxic conditions at the epithelial monolayer, even under submerged conditions. Guided by computational models, hyperoxygenation of atmospheric conditions was applied to manipulate oxygenation at the monolayer surface. The impact of this rescue condition was confirmed by assessing protein expression of hypoxia-sensitive markers. Differentiation of primary human bronchial epithelial cells isolated from healthy patients was then assessed in air–liquid interface, submerged and hyperoxygenated submerged culture conditions. Markers of differentiation, including epithelial layer thickness, tight junction formation, ciliated surface area and functional capacity for mucociliary clearance, were assessed and found to improve significantly in hyperoxygenated submerged cultures, beyond standard air–liquid interface or submerged culture conditions. These results demonstrate that an air–liquid interface is not necessary to produce highly differentiated epithelial structures, and that increased availability of oxygen and nutrient media can be leveraged as important strategies to improve epithelial differentiation for applications in respiratory toxicology and therapeutic development.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2639
Author(s):  
Frauke Stanke ◽  
Sabina Janciauskiene ◽  
Stephanie Tamm ◽  
Sabine Wrenger ◽  
Ellen Luise Raddatz ◽  
...  

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is influenced by the fundamental cellular processes like epithelial differentiation/polarization, regeneration and epithelial–mesenchymal transition. Defects in CFTR protein levels and/or function lead to decreased airway surface liquid layer facilitating microbial colonization and inflammation. The SERPINA1 gene, encoding alpha1-antitrypsin (AAT) protein, is one of the genes implicated in CF, however it remains unknown whether AAT has any influence on CFTR levels. In this study we assessed CFTR protein levels in primary human lung epithelial cells grown at the air-liquid-interface (ALI) alone or pre-incubated with AAT by Western blots and immunohistochemistry. Histological analysis of ALI inserts revealed CFTR- and AAT-positive cells but no AAT-CFTR co-localization. When 0.5 mg/mL of AAT was added to apical or basolateral compartments of pro-inflammatory activated ALI cultures, CFTR levels increased relative to activated ALIs. This finding suggests that AAT is CFTR-modulating protein, albeit its effects may depend on the concentration and the route of administration. Human lung epithelial ALI cultures provide a useful tool for studies in detail how AAT or other pharmaceuticals affect the levels and activity of CFTR.


2021 ◽  
pp. 105122
Author(s):  
Thuc Nguyen Dan Do ◽  
Kim Donckers ◽  
Laura Vangeel ◽  
Arnab K. Chatterjee ◽  
Philippe A. Gallay ◽  
...  

2020 ◽  
Vol 318 (6) ◽  
pp. L1158-L1164
Author(s):  
Emily Mavin ◽  
Bernard Verdon ◽  
Sean Carrie ◽  
Vinciane Saint-Criq ◽  
Jason Powell ◽  
...  

Shifts in cellular metabolic phenotypes have the potential to cause disease-driving processes in respiratory disease. The respiratory epithelium is particularly susceptible to metabolic shifts in disease, but our understanding of these processes is limited by the incompatibility of the technology required to measure metabolism in real-time with the cell culture platforms used to generate differentiated respiratory epithelial cell types. Thus, to date, our understanding of respiratory epithelial metabolism has been restricted to that of basal epithelial cells in submerged culture, or via indirect end point metabolomics readouts in lung tissue. Here we present a novel methodology using the widely available Seahorse Analyzer platform to monitor real-time changes in the cellular metabolism of fully differentiated primary human airway epithelial cells grown at air-liquid interface (ALI). We show increased glycolytic, but not mitochondrial, ATP production rates in response to physiologically relevant increases in glucose availability. We also show that pharmacological inhibition of lactate dehydrogenase is able to reduce glucose-induced shifts toward aerobic glycolysis. This method is timely given the recent advances in our understanding of new respiratory epithelial subtypes that can only be observed in vitro through culture at ALI and will open new avenues to measure real-time metabolic changes in healthy and diseased respiratory epithelium, and in turn the potential for the development of novel therapeutics targeting metabolic-driven disease phenotypes.


Sign in / Sign up

Export Citation Format

Share Document