scholarly journals Lck dependence of signaling pathways activated by γirradiation and CD3ε engagement in RAG-1-/-immature thymocytes

1996 ◽  
Vol 8 (7) ◽  
pp. 1159-1164 ◽  
Author(s):  
Gillian Wu ◽  
Jayne S. Danska ◽  
Cynthia J. Guldos
Immunity ◽  
1999 ◽  
Vol 10 (5) ◽  
pp. 537-546 ◽  
Author(s):  
Frank Gärtner ◽  
Frederick W Alt ◽  
Robert Monroe ◽  
Micheline Chu ◽  
Barry P Sleckman ◽  
...  

1995 ◽  
Vol 181 (1) ◽  
pp. 193-202 ◽  
Author(s):  
K P Kearse ◽  
Y Takahama ◽  
J A Punt ◽  
S O Sharrow ◽  
A Singer

Differentiation of immature CD4+ CD8+ thymocytes into mature CD4+ or CD8+ T cells occurs within the thymus and is dependent upon expression of antigen receptor complexes (T cell receptor [TCR]) containing clonotypic alpha/beta proteins. We have recently found that CD4+ CD8+ thymocytes express low levels of surface TCR because of limitations placed on TCR assembly by the instability of nascent TCR-alpha proteins within the endoplasmic reticulum (ER) of immature thymocytes. Because TCR-alpha/beta expression increases during development, a molecular mechanism must exist for increasing the number of assembled TCR complexes present in immature CD4+ CD8+ thymocytes that have been signaled to differentiate into mature T cells, although no such mechanism has yet been described. In the current report we have examined the molecular consequences of intracellular signals generated by engagement of surface TCR complexes on immature CD4+ CD8+ thymocytes. Isolated TCR engagement generated signals that increased TCR-alpha RNA levels and increased synthesis of TCR-alpha proteins, which, in turn, significantly increased assembly of complete TCR-alpha/beta complexes in CD4+ CD8+ thymocytes. Increased TCR-alpha protein levels in TCR-signaled CD4+ CD8+ thymocytes was the result of increased synthesis and not increased stability of TCR-alpha proteins, indicating that TCR engagement compensates for, but does not correct, the inherent instability of TCR-alpha proteins in the ER of immature thymocytes. Consistent with the delivery by TCR engagement of a positive selection signal, TCR engagement also increased CD5 expression, decreased RAG-1 expression, and decreased CD4/CD8 coreceptor expression in immature CD4+ CD8+ thymocytes. These data identify amplified TCR-alpha expression as an initial response of immature CD4+ CD8+ thymocytes to TCR-mediated positive selection signals and provide a molecular basis for increased surface TCR density on developing thymocytes undergoing selection events within the thymus.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
P Balachandran ◽  
FH Sarkar ◽  
DS Pasco

2015 ◽  
Vol 53 (01) ◽  
Author(s):  
J Su ◽  
W Chamulitrat ◽  
W Stremmel ◽  
A Pathil

Sign in / Sign up

Export Citation Format

Share Document