scholarly journals Toll-like receptor 9 trafficking and signaling for type I interferons requires PIKfyve activity

2015 ◽  
Vol 27 (9) ◽  
pp. 435-445 ◽  
Author(s):  
Kachiko Hayashi ◽  
Miwa Sasai ◽  
Akiko Iwasaki
2018 ◽  
Vol 475 (22) ◽  
pp. 3595-3607 ◽  
Author(s):  
Anthony Fullam ◽  
Lili Gu ◽  
Yvette Höhn ◽  
Martina Schröder

DDX3 is a DEAD-box RNA helicase that we and others have previously implicated in antiviral immune signalling pathways leading to type I interferon (IFN) induction. We previously demonstrated that it directly interacts with the kinase IKKε (IκB kinase ε), enhances it activation, and then facilitates phosphorylation of the transcription factor IRF3 by IKKε. However, the TLR7/9 (Toll-like receptor 7/9)-mediated pathway, one of the most physiologically relevant IFN induction pathways, proceeds independently of IKKε or the related kinase TBK1 (TANK-binding kinase 1). This pathway induces type I IFN production via the kinases NIK (NF-κB-inducing kinase) and IKKα and is activated when plasmacytoid dendritic cells sense viral nucleic acids. In the present study, we demonstrate that DDX3 also directly interacts with IKKα and enhances its autophosphorylation and -activation. Modulation of DDX3 expression consequently affected NIK/IKKα-mediated IRF7 phosphorylation and induction of type I interferons. In addition, alternative NF-κB (nuclear factor-κB) activation, another pathway regulated by NIK and IKKα, was also down-regulated in DDX3 knockdown cells. This substantially broadens the effects of DDX3 in innate immune signalling to pathways beyond TBK1/IKKε and IFN induction. Dysregulation of these pathways is involved in disease states, and thus, our research might implicate DDX3 as a potential target for their therapeutic manipulation.


2018 ◽  
Vol 121 ◽  
pp. 16-24 ◽  
Author(s):  
K.H. Simons ◽  
M.R. de Vries ◽  
H.A.B. Peters ◽  
J.F. Hamming ◽  
J.W. Jukema ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 2857
Author(s):  
Mahesh Chandra Patra ◽  
Maria Batool ◽  
Muhammad Haseeb ◽  
Sangdun Choi

Toll-like receptor 3 (TLR3) provides the host with antiviral defense by initiating an immune signaling cascade for the production of type I interferons. The X-ray structures of isolated TLR3 ectodomain (ECD) and transmembrane (TM) domains have been reported; however, the structure of a membrane-solvated, full-length receptor remains elusive. We investigated an all-residue TLR3 model embedded inside a phospholipid bilayer using molecular dynamics simulations. The TLR3-ECD exhibited a ~30°–35° tilt on the membrane due to the electrostatic interaction between the N-terminal subdomain and phospholipid headgroups. Although the movement of dsRNA did not affect the dimer integrity of TLR3, its sugar-phosphate backbone was slightly distorted with the orientation of the ECD. TM helices exhibited a noticeable tilt and curvature but maintained a consistent crossing angle, avoiding the hydrophobic mismatch with the bilayer. Residues from the αD helix and the CD and DE loops of the Toll/interleukin-1 receptor (TIR) domains were partially absorbed into the lower leaflet of the bilayer. We found that the previously unknown TLR3-TIR dimerization interface could be stabilized by the reciprocal contact between αC and αD helices of one subunit and the αC helix and the BB loop of the other. Overall, the present study can be helpful to understand the signaling-competent form of TLR3 in physiological environments.


2009 ◽  
Vol 83 (19) ◽  
pp. 9824-9834 ◽  
Author(s):  
Nan Wang ◽  
Yuqiong Liang ◽  
Santhana Devaraj ◽  
Jie Wang ◽  
Stanley M. Lemon ◽  
...  

ABSTRACT Toll-like receptor-3 (TLR3) senses double-stranded RNA, initiating signaling that activates NF-κB and interferon regulatory factor 3 (IRF-3), thereby inducing the synthesis of proinflammatory cytokines, type I interferons, and numerous interferon-stimulated genes (ISGs). This pathway has not been extensively investigated in human hepatocytes, and its role in sensing and protecting against hepatitis virus infections is uncertain. We show here that primary human hepatocytes express TLR3 and robustly upregulate ISGs upon poly(I·C) stimulation. We also show that TLR3 senses hepatitis C virus (HCV) infection when expressed in permissive hepatoma cells, acting independently of retinoic acid-inducible gene I and inducing IRF-3 activation and the synthesis of ISGs that restrict virus replication. In turn, HCV infection reduces the abundance of TRIF, an essential TLR3 adaptor, and impairs poly(I·C)-induced signaling. The induction and disruption of TLR3 signaling by HCV may be important factors in determining the outcome of infection and the ability of HCV to establish persistent infections.


2011 ◽  
Vol 140 (2) ◽  
pp. 697-708.e4 ◽  
Author(s):  
Jan Petrasek ◽  
Angela Dolganiuc ◽  
Timea Csak ◽  
Evelyn A. Kurt–Jones ◽  
Gyongyi Szabo

2010 ◽  
Vol 70 (7) ◽  
pp. 2595-2603 ◽  
Author(s):  
Arnold I. Chin ◽  
Andrea K. Miyahira ◽  
Anthony Covarrubias ◽  
Juli Teague ◽  
Beichu Guo ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 785
Author(s):  
Alessandra Tesser ◽  
Giulia Maria Piperno ◽  
Alessia Pin ◽  
Elisa Piscianz ◽  
Valentina Boz ◽  
...  

Cytoplasmic nucleic acids sensing through cGAS-STING-TBK1 pathway is crucial for the production of antiviral interferons (IFNs). IFN production can also be induced by lipopolysaccharide (LPS) stimulation through Toll-like receptor 4 (TLR4) in appropriate conditions. Of note, both IFN production and dysregulated LPS-response could play a role in the pathogenesis of Systemic Lupus Erythematosus (SLE). Indeed, LPS can trigger SLE in lupus-prone mice and bacterial infections can induce disease flares in human SLE. However, the interactions between cGAS and TLR4 pathways to IFNs have been poorly investigated. To address this issue, we studied LPS-stimulation in cellular models with a primed cGAS-STING-TBK1 pathway. cGAS-stimulation was naturally sustained by undigested self-nucleic acids in fibroblasts from DNase2-deficiency interferonopathy, whilst it was pharmacologically obtained by cGAMP-stimulation in THP1 cells and murine bone marrow-derived dendritic cells. We showed that cells with a primed cGAS-STING-TBK1 pathway displayed enhanced IFNs production after TLR4-challenge. STING-inhibition did not affect IFN production after LPS alone, but prevented the amplified IFN production in cGAMP-primed cells, suggesting that functional STING is required for priming-dependent enhancement. Furthermore, we speculated that an increased PIK3AP1 expression in DNase2-deficient fibroblasts may link cGAMP-priming with increased LPS-induced IFN production. We showed that both the hyper-expression of PIK3API and the enhanced LPS-induced IFN production can be contrasted by STING inhibitors. Our results may explain how bacterial LPS can synergize with cGAS-pathway in promoting the development of SLE-like autoimmunity.


2007 ◽  
Vol 56 (3) ◽  
pp. 1010-1020 ◽  
Author(s):  
Michael R. York ◽  
Taro Nagai ◽  
Alyson J. Mangini ◽  
Raphaël Lemaire ◽  
Jean Maguire van Seventer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document