Effect of Sch 29482 on Gram-negative bacteria in broth, serum and in combination with human polymorphonuclear leukocytes

1982 ◽  
Vol 9 (suppl C) ◽  
pp. 213-219
Author(s):  
F. D. Daschner ◽  
H. Langmaack ◽  
M. Bassler ◽  
U. Wais
PEDIATRICS ◽  
1968 ◽  
Vol 41 (3) ◽  
pp. 591-599
Author(s):  
Edward L. Kaplan ◽  
Throstur Laxdal ◽  
Paul G. Quie

Polymorphonuclear leukocytes (PMNs) from children with chronic granulomatous disease of childhood have been shown to readily phagocytize staphylococci and certain gram-negative bacteria, but they demonstrate an impaired intracellular bactericidal capacity for these organisms. The in vitro phagocytic and bactericidal capacities of PMNs from three patients with this disease for four species of streptococci (Streptococcus faecalis, Streptococcus viridans, microaerophlic streptococci, and Streptococcus pyogenes) were tested by the modified method of Maaloe. The PMNs obtained from the patients phagocytized and killed the four species of streptococci in a normal manner while still showing the defect for Staph. aureus and S. marcescens. Morphologic examination of coverslip preparations of PMNs revealed minimal post-phagocytic degranulation and vacuole formation when either staphylococci and serratia or the streptococcal species were tested. This suggests that different intracellular mechanisms may be responsible for the streptococcal killing. These observations are in accord with the clinical courses of these patients, who rarely have serious streptococcal infections in contrast to the frequent and life-threatening infections caused by staphylococci and some gram-negative bacteria.


PEDIATRICS ◽  
1972 ◽  
Vol 50 (2) ◽  
pp. 264-270
Author(s):  
Paul G. Quie

Serum from most normal persons contains specific antibodies which react with common bacterial species preparing their surfaces so that phagocytosis by leukocytes can take place. The Fab part of these antibodies reacts with immunologic specificity with antigens on the surface of bacteria. Another part of the immunoglobulin molecule termed the Fc portion is activated during the attachment of the Fab portion to bacteria and becomes a site for attachment of bacteria to receptors on the surface of phagocytic cells. This activity is greatly amplified by heat-labile serum factors. Normally bacteria are rapidly killed by human polymorphonuclear leukocytes after engulfment occurs. However staphylococci and gram-negative species of bacteria survive in the leukocytes of patients with the syndrome "Chronic Granulomatous Disease of Childhood." These patients have suffered recurrent severe infections with bacterial species that are part of the body's resident bacterial flora. By contrast these patients are not at increased risk to infection from such pyogenic bacterial species as group A streptococci or pneumococci. The leukocytes from patients with chronic granulomatous disease produce little hydrogen peroxide during phagocytosis. Catalase-producing staphylococci and gram-negative bacteria are not killed, but hydrogen peroxide-producing streptococci and pneumococci are killed. A normal metabolic response to phagocytosis as well as release of lysosonial factors are essential for the bactericidal activity of human polymorphonuclear leukocytes.


2006 ◽  
Vol 74 (6) ◽  
pp. 3277-3284 ◽  
Author(s):  
Jason H. Barker ◽  
Jerrold Weiss ◽  
Michael A. Apicella ◽  
William M. Nauseef

ABSTRACT Francisella tularensis is the intracellular gram-negative coccobacillus that causes tularemia, and its virulence and infectiousness make it a potential agent of bioterrorism. Previous studies using mononuclear leukocytes have shown that the lipopolysaccharide (LPS) of F. tularensis is neither a typical proinflammatory endotoxin nor an endotoxin antagonist. This inertness suggests that F. tularensis LPS does not bind host LPS-sensing molecules such as LPS-binding protein (LBP). Using priming of the polymorphonuclear leukocyte (PMN) oxidase as a measure of endotoxicity, we found that F. tularensis live vaccine strain LPS did not behave like either a classic endotoxin or an endotoxin antagonist in human PMNs, even when the concentration of LBP was limiting. Furthermore, F. tularensis LPS did not compete with a radiolabeled lipooligosaccharide from Neisseria meningitidis for binding to LBP or to the closely related PMN granule protein, bactericidal/permeability-increasing protein. Our results suggest that the inertness of F. tularensis LPS and the resistance of F. tularensis to oxygen-independent PMN killing may result from the inability of F. tularensis LPS to be recognized by these important LPS-sensing molecules of the innate immune system.


Author(s):  
Roger C. Wagner

Bacteria exhibit the ability to adhere to the apical surfaces of intestinal mucosal cells. These attachments either precede invasion of the intestinal wall by the bacteria with accompanying inflammation and degeneration of the mucosa or represent permanent anchoring sites where the bacteria never totally penetrate the mucosal cells.Endemic gram negative bacteria were found attached to the surface of mucosal cells lining the walls of crypts in the rat colon. The bacteria did not intrude deeper than 0.5 urn into the mucosal cells and no degenerative alterations were detectable in the mucosal lining.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Xie Nianming ◽  
Ding Shaoqing ◽  
Wang Luping ◽  
Yuan Zenglin ◽  
Zhan Guolai ◽  
...  

Perhaps the data about periplasmic enzymes are obtained through biochemical methods but lack of morphological description. We have proved the existence of periplasmic bodies by electron microscope and described their ultrastructures. We hope this report may draw the attention of biochemists and mrophologists to collaborate on researches in periplasmic enzymes or periplasmic bodies with each other.One or more independent bodies may be seen in the periplasmic space between outer and inner membranes of Gram-negative bacteria, which we called periplasmic bodies. The periplasmic bodies have been found in seven species of bacteria at least, including the Pseudomonas aeroginosa. Shigella flexneri, Echerichia coli. Yersinia pestis, Campylobacter jejuni, Proteus mirabilis, Clostridium tetani. Vibrio cholerae and Brucella canis.


Author(s):  
Jacob S. Hanker ◽  
Dale N. Holdren ◽  
Kenneth L. Cohen ◽  
Beverly L. Giammara

Keratitis and conjunctivitis (infections of the cornea or conjunctiva) are ocular infections caused by various bacteria, fungi, viruses or parasites; bacteria, however, are usually prominent. Systemic conditions such as alcoholism, diabetes, debilitating disease, AIDS and immunosuppressive therapy can lead to increased susceptibility but trauma and contact lens use are very important factors. Gram-negative bacteria are most frequently cultured in these situations and Pseudomonas aeruginosa is most usually isolated from culture-positive ulcers of patients using contact lenses. Smears for staining can be obtained with a special swab or spatula and Gram staining frequently guides choice of a therapeutic rinse prior to the report of the culture results upon which specific antibiotic therapy is based. In some cases staining of the direct smear may be diagnostic in situations where the culture will not grow. In these cases different types of stains occasionally assist in guiding therapy.


Author(s):  
J Hanker ◽  
E.J. Burkes ◽  
G. Greco ◽  
R. Scruggs ◽  
B. Giammara

The mature neutrophil with a segmented nucleus (usually having 3 or 4 lobes) is generally considered to be the end-stage cell of the neutrophil series. It is usually found as such in the bone marrow and peripheral blood where it normally is the most abundant leukocyte. Neutrophils, however, must frequently leave the peripheral blood and migrate into areas of infection to combat microorganisms. It is in such areas that neutrophils were first observed to fragment to form platelet-size particles some of which have a nuclear lobe. These neutrophil pseudoplatelets (NPP) can readily be distinguished from true platelets because they stain for neutrophil myeloperoxidase. True platelets are not positive in this staining reaction because their peroxidase Is inhibited by glutaraldehyde. Neutrophil pseudoplatelets, as well as neutrophils budding to form NPP, could frequently be observed in peripheral blood or bone marrow samples of leukemia patients. They are much more prominent, however, in smears of inflammatory exudates that contain gram-negative bacteria and in gingival crevicular fluid samples from periodontal disease sites. In some of these samples macrophages ingesting, or which contained, pseudoplatelets could be observed. The myeloperoxidase in the ingested pseudoplatelets was frequently active. Despite these earlier observations we did not expect to find many NPP in subgingival plaque smears from diseased sites. They were first seen by light microscopy (Figs. 1, 3-5) in smears on coverslips stained with the PATS reaction, a variation of the PAS reaction which deposits silver for light and electron microscopy. After drying replicate PATS-stained coverslips with hexamethyldisilazane, they were sputter coated with gold and then examined by the SEI and BEI modes of scanning electron microscopy (Fig. 2). Unstained replicate coverslips were fixed, and stained for the demonstration of myeloperoxidase in budding neutrophils and NPP. Neutrophils, activated macrophages and spirochetes as well as other gram-negative bacteria were also prominent in the PATS stained samples. In replicate subgingival plaque smears stained with our procedure for granulocyte peroxidases only neutrophils, budding neutrophils or NPP were readily observed (Fig. 6).


Sign in / Sign up

Export Citation Format

Share Document