scholarly journals Effects of an autoinducer analogue on antibiotic tolerance in Pseudomonas aeruginosa

Author(s):  
Takashi Amoh ◽  
Keiji Murakami ◽  
Reiko Kariyama ◽  
Kenji Hori ◽  
Darija Viducic ◽  
...  
F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 14
Author(s):  
Dina Auliya Amly ◽  
Puspita Hajardhini ◽  
Alma Linggar Jonarta ◽  
Heribertus Dedy Kusuma Yulianto ◽  
Heni Susilowati

Background: Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of P. aeruginosa. Methods: Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC 10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.


Author(s):  
Hyeon-Ji Hwang ◽  
Xi-Hui Li ◽  
Soo-Kyoung Kim ◽  
Joon-Hee Lee

Pseudomonas aeruginosa is a notorious pathogen with high antibiotic resistance, strong virulence, and ability to cause biofilm-mediated chronic infection. We found that these characteristics change profoundly before and after the time when anthranilate is produced as an “anthranilate peak”.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 14
Author(s):  
Dina Auliya Amly ◽  
Puspita Hajardhini ◽  
Alma Linggar Jonarta ◽  
Heribertus Dedy Kusuma Yulianto ◽  
Heni Susilowati

Background: Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of P. aeruginosa. Methods: Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC 10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Konstanze T. Schiessl ◽  
Fanghao Hu ◽  
Jeanyoung Jo ◽  
Sakila Z. Nazia ◽  
Bryan Wang ◽  
...  

2021 ◽  
Author(s):  
Maria van Rossem ◽  
Sandra Wilks ◽  
Malgosia Kaczmarek ◽  
Patrick R. Secor ◽  
Giampaolo D’Alessandro

AbstractFilamentous molecules tend to spontaneously assemble into liquid crystalline droplets with a tactoid morphology in the environments with the high concentration on non-adsorbing molecules. Tactoids of filamentous Pf bacteriophage, such as those produced by Pseudomonas aeruginosa, have been linked with increased antibiotic tolerance. We modelled this system and show that tactoids, composed of filamentous Pf virions, can lead to antibiotic tolerance by acting as an adsorptive diffusion barrier. The continuum model, reminiscent of descriptions of reactive diffusion in porous media, has been solved numerically and good agreement was found with the analytical results, obtained using a homogenisation approach. We find that the formation of tactoids significantly increases antibiotic diffusion times leading to stronger antibiotic resistance.


Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Mizuki Abe ◽  
Keiji Murakami ◽  
Yuka Hiroshima ◽  
Takashi Amoh ◽  
Mayu Sebe ◽  
...  

Macrolide antibiotics are used in treating Pseudomonas aeruginosa chronic biofilm infections despite their unsatisfactory antibacterial activity, because they display several special activities, such as modulation of the bacterial quorum sensing and immunomodulatory effects on the host. In this study, we investigated the effects of the newly synthesized P. aeruginosa quorum-sensing autoinducer analogs (AIA-1, -2) on the activity of azithromycin and clarithromycin against P. aeruginosa. In the killing assay of planktonic cells, AIA-1 and -2 enhanced the bactericidal ability of macrolides against P. aeruginosa PAO1; however, they did not affect the minimum inhibitory concentrations of macrolides. In addition, AIA-1 and -2 considerably improved the killing activity of azithromycin and clarithromycin in biofilm cells. The results indicated that AIA-1 and -2 could affect antibiotic tolerance. Moreover, the results of hydrocarbon adherence and cell membrane permeability assays suggested that AIA-1 and -2 changed bacterial cell surface hydrophobicity and accelerated the outer membrane permeability of the hydrophobic antibiotics such as azithromycin and clarithromycin. Our study demonstrated that the new combination therapy of macrolides and AIA-1 and -2 may improve the therapeutic efficacy of macrolides in the treatment of chronic P. aeruginosa biofilm infections.


2020 ◽  
Author(s):  
Isabella Santi ◽  
Pablo Manfredi ◽  
Enea Maffei ◽  
Adrian Egli ◽  
Urs Jenal

AbstractThe widespread use of antibiotics promotes the evolution and dissemination of resistance and tolerance mechanisms. To assess the relevance of tolerance and its implications for resistance development, we used in vitro evolution and analyzed inpatient microevolution of Pseudomonas aeruginosa, an important human pathogen causing acute and chronic infections. We show that the development of tolerance precedes and promotes the acquisition of resistance in vitro and we present evidence that similar processes shape antibiotic exposure in human patients. Our data suggest that during chronic infections, P. aeruginosa first acquires moderate drug tolerance before following distinct evolutionary trajectories that lead to high-level multi-drug tolerance or to antibiotic resistance. Our studies propose that the development of antibiotic tolerance predisposes bacteria for the acquisition of resistance at early stages of infection and that both mechanisms independently promote bacterial survival during antibiotic treatment at later stages of chronic infections.


2021 ◽  
Author(s):  
Rosana Monteiro ◽  
Andreia Patrícia Magalhães ◽  
Maria Olivia Pereira ◽  
Ana Margarida Sousa

Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion: P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.


Sign in / Sign up

Export Citation Format

Share Document