Collaborative Study of the Thermistor Cryoscopic Method for the Determination of the Freezing Point Value of Milk

1968 ◽  
Vol 51 (4) ◽  
pp. 816-821
Author(s):  
R W Henningson

Abstract Data from 19 collaborators for two sample pairs were used to estimate the precision and systematic error of the thermistor cryoscopic method for determining the freezing point value of milk. Precision was greater for the milks (0.0015°) than for the standards (0.004°). The systematic error was estimated to be 0.0033°. The standard deviation for interlaboratory individual determinations was estimated to be 0.0049°.

1969 ◽  
Vol 52 (4) ◽  
pp. 756-759
Author(s):  
C James Rosene

Abstract A colorimetric method for determining water-soluble nitrate in tobacco was studied by 14 laboratories on eight Burley and two cigar filler tobacco samples with nitrate levels of 0.5–2.4%. In the method, ground tobacco is extracted with water and filtered, and an aliquot is then treated with 2,4-xylenol in sulfuric acid; then the resulting 6-nitro-2,4-xylenol is removed by distillation and measured spectrophotometrically at 450 µm. Results show that, althoughthe precision standard deviation among laboratories is generally acceptable, the systematic error standard deviation is unacceptably high. This study will be continued.


1974 ◽  
Vol 57 (2) ◽  
pp. 373-378 ◽  
Author(s):  
Milan Ihnat

Abstract A fluorometric method for the determination of selenium in foods reported previously was studied collaboratively. Nineteen laboratories reported analytical results on 10 samples representative of vegetables, cereal, dairy products, meat, and fish, and containing naturally occurring selenium. For the 5 pairs of samples, the coefficients of variation based on precision standard deviation were 2 5 . 9% at 16 ng selenium, 15.8% at 98 ng, 8.5% at 233 ng, 6.1% at 379 ng, and 4.1 % at 427 ng. The corresponding coefficients of variation computed from overall standard deviations were 65.3, 17.5, 8.9, 8.1, and 5.6%. Systematic error was significant for 2 pairs (F-test, p = 0.01), but not for the remaining 3 (p = 0.05). The ratio of the systematic error standard deviation to the precision standard deviation varied from 0.21 to 1.64. Analyses of 2 NBS standard reference materials, orchard leaves (75 ng selenium) and bovine liver (208 ng selenium), yielded results higher by 16 and 10%, respectively. The precision and accuracy of the collaborative procedure were deemed acceptable and the method has been adopted as official first action.


1966 ◽  
Vol 49 (3) ◽  
pp. 511-515 ◽  
Author(s):  
R W Henningson

Abstract Bath level, sample temperature, rate of stirring, degree of supercooling, sample size, sample isolation, and refreezing of the sample were the variables in the thermistor cryoscopic method for the determination of the freezing point value of milk chosen for study. Freezing point values were determined for two samples of milk and two secondary salt standards utilizing eight combinations of the seven variables in two test patterns. The freezing point value of the salt standards ranged from –0.413 to –0.433°C and from –0.431 to –0.642°C. The freezing point values of the milk samples ranged from –0.502 to –0.544°C and from –0.518 to –0.550°C. Statistical analysis of the data showed that sample isolation was a poor procedure and that other variables produced changes in the freezing point value ranging from 0.001 to 0.011°C. It is recommended that specific directions be instituted for the thermistor cryoscopic method, 15.040–15.041, and that the method be subjected to a collaborative study.


1998 ◽  
Vol 81 (4) ◽  
pp. 763-774 ◽  
Author(s):  
Joanna M Lynch ◽  
David M Barbano ◽  
J Richard Fleming

Abstract The classic method for determination of milk casein is based on precipitation of casein at pH 4.6. Precipitated milk casein is removed by filtration and the nitrogen content of either the precipitate (direct casein method) or filtrate (noncasein nitrogen; NCN) is determined by Kjeldahl analysis. For the indirect casein method, milk total nitrogen (TN; Method 991.20) is also determined and casein is calculated as TN minus NCN. Ten laboratories tested 9 pairs of blind duplicate raw milk materials with a casein range of 2.42- 3.05℅ by both the direct and indirect casein methods. Statistical performance expressed in protein equivalents (nitrogen ⨯ 6.38) with invalid and outlier data removed was as follows: NCN method (wt%), mean = 0.762, sr = 0.010, SR = 0.016, repeatability relative standard deviation (RSDr) = 1.287℅, reproducibility relative standard deviation (RSDR) = 2.146%; indirect casein method (wt℅), mean = 2.585, repeatability = 0.015, reproducibility = 0.022, RSDr = 0.560℅, RSDR = 0.841; direct casein method (wt℅), mean = 2.575, sr = 0.015, sR = 0.025, RSDr = 0.597℅, RSDR = 0.988℅. Method performance was acceptable and comparable to similar Kjeldahl methods for determining nitrogen content of milk (Methods 991.20, 991.21,991.22, 991.23). The direct casein, indirect casein, and noncasein nitrogen methods have been adopted by AOAC INTERNATIONAL.


1973 ◽  
Vol 56 (5) ◽  
pp. 1164-1172
Author(s):  
Milan Ihnat ◽  
Robert J Westerby ◽  
Israel Hoffman

Abstract The distillation-spectrophotometric method of Hoffman for determining maleic hydrazide has been modified to include a double distillation and was applied to the determination of 1–30 ppm maleic hydrazide residues in tobacco and vegetables. Recoveries of 1–23 μg added maleic hydrazide were independent of weight of maleic hydrazide, but did depend on sample and sample weight. The following recoveries were obtained from 0.5 g sample: pipe tobacco, 84%; commercially dehydrated potato, 83%; cigar tobacco, 81%; dried potato, 76%; fluecured tobacco, 73%; dried carrot, 71%. In the absence of sample, the recovery was 82%. When appropriate standard curves were used, maleic hydrazide levels determined in tobacco samples were essentially independent of sample weight in the range 0.1–3 g. The mean relative standard deviation for a variety of field-treated and fortified tobacco samples containing 1–28 ppm maleic hydrazide was 3%. The precision and sensitivity of this procedure seem to be substantial improvements over official method 29.111–29.117. It is recommended that the present method be subjected to a collaborative study.


2002 ◽  
Vol 85 (4) ◽  
pp. 889-900 ◽  
Author(s):  
Eric Verdon ◽  
Pierric Couëdor ◽  
Pierre Maris ◽  
Michel Laurentie ◽  
P Batjoens ◽  
...  

Abstract A collaborative study involving 14 laboratories was conducted to determine residues of ampicillin in porcine muscle tissue by using a liquid chromatographic method developed for multipenicillin analysis that can quantitate 8 penicillin compounds (benzylpenicillin, phenoxymethylpenicillin, ampicillin, amoxicillin, nafcillin, oxacillin, cloxacillin, and dicloxacillin) at trace levels in muscle tissue. This method involves extraction of the penicillins with phosphate buffer, pH 9, followed cleanup and concentration on a C18 solid-phase extraction column and reaction with benzoic anhydride at 50°C and with 1,2,4-triazole and mercury(II) chloride solution, pH 9.0, at 65°C. The derivatized compounds are eluted isocratically on a C8 column with a mobile phase of acetonitrile and phosphate buffer (pH 6; 0.1M) containing sodium thiosulfate and the ion-pair reagent tetrabutylammonium hydrogen sulfate. The penicillins are detected by UV absorption at 325 nm. The limit of detection and the limit of determination (quantitation) of the method were calculated to be approximately 3–5 and 25 μg/kg, respectively, in accordance with the criteria of European Union (EU) Decision No. 93/256/EEC. In this first interlaboratory study, collaborators were instructed to monitor 4 different penicillin compounds (benzylpenicillin, phenoxymethylpenicillin, ampicillin, and amoxicillin) by analyzing 8 blind samples of muscle tissue in triplicate. These samples were prepared from 2 materials containing different concentrations of incurred ampicillin (63.5 μg/kg for material No. 1 and 358.1 μg/kg for material No. 2) and 1 blank material. The repeatability relative standard deviation and the reproducibility relative standard deviation were 10.2 and 17.4%, respectively, for material No. 1 and 7.0 and 16.0%, respectively, for material No. 2. These results demonstrate that the method is suitable for the determination of ampicillin residues in muscle tissue at the EU maximum residue limit (50 μg/kg) and above. However, the identification of positives by this procedure may need additional confirmation by techniques with greater specificity, such as liquid chromatography combined with mass spectrometry, or tandem mass spectrometry. Investigations regarding the basis of interlaboratory testing studies will further demonstrate the suitability of multiresidue methodology for detecting and quantitating other compounds in the family of penicillin antibiotics.


2003 ◽  
Vol 86 (2) ◽  
pp. 400-406 ◽  
Author(s):  
Anders Staffas ◽  
Arne Nyman ◽  
K Ask ◽  
E Hermansson ◽  
J S Jacobsen ◽  
...  

Abstract Results are presented from an NMKL (Nordic Committee on Food Analysis) collaborative study of a method for the determination of cholecalciferol (vitamin D3) in foods. The method is based on the addition of an internal standard (vitamin D2), followed by saponification and extraction with n-heptane. The fraction that contains vitamin D2/D3 is separated by preparative normal-phase liquid chromatography (LC), and the analytes are determined by reversed-phase LC with UV detection at 265 nm. The method was tested by 8 participating laboratories. In this study 6 different matrixes were analyzed for cholecalciferol content: milk, liquid infant formula (gruel), cooking oil, margarine, infant formula, and fish oil. The contents varied from 0.4 to 12 μg/100 g. Three matrixes (milk, gruel, and margarine) were fortified with vitamin D3. In the other matrixes, vitamin D3 was added at 3 different levels at the Swedish National Food Administration. The milk was analyzed as a blind duplicate, whereas the other matrixes were analyzed as split-level pairs. The recoveries from the samples with vitamin D3 added varied from 93 to 102%. The repeatability relative standard deviation (RSDr) values for accepted results varied between 2.2% (fish oil) and 7.4% (cooking oil), whereas the reproducibility relative standard deviation (RSDR) values varied between 6.8% (margarine) and 24% (cooking oil).


1971 ◽  
Vol 54 (3) ◽  
pp. 685-687
Author(s):  
James E Launer

Abstract The titrimetric method for mercury described by Elmore in 1946 was modified and collaboratively studied with formulations containing 6.7% phenylmercury urea in one test pair and 1% mercuric nitrate in another test pair. Mercury is determined in diluted solution, following reflux at 30 drops/min with fuming H2SO4-red fuming HNO3, by titration with standard thiocyanate solution, using ferric alum as indicator. The method is not applicable in presence of large quantities of chlorine-bearing materials. Single determinations on 4 samples by 14 collaborators showed that the standard deviation estimation of random error was 0.058 for phenylmercury urea and 0.004 for mercuric nitrate. Standard deviation estimates of systematic error were 0.048 and 0.009, respectively. The method has been adopted as official first action.


1972 ◽  
Vol 55 (3) ◽  
pp. 498-503
Author(s):  
D H Kleyn ◽  
C L Huang

Abstract A quantitative procedure (modified new method) has been studied that employs phenolphthalein monophosphate as the substrate and dialysis of released phenolphthalein followed by subseqvient measurement of the dialysate in a spectrophotometer at 550 nm. Nine collaborators evaluated 6 unknown samples of milk containing various levels of rawmilk, in triplicate, by the modified new method and the Scharer modified spectrophotometric method. Analysis of variance revealed that the random error of the modified new method was almost twice that of the Scharer technique, while the systematic error of the modified new method was only about ¼ that of the latter method. Two-sample charts indicated that the systematic error of the modified new method was less than that of the Scharer method; this was verified by a statistical comparison which showed that the total analytical error was much lower for the modified new method. A linear relationship was found between the 2 methods by 5 of the collaborators; the correlation coefficients ranged from 0.993 to 0.999. Based on these results, the method has been adopted as official first action for the analysis of milk.


1989 ◽  
Vol 72 (1) ◽  
pp. 34-37 ◽  
Author(s):  
J Zaalberg

Abstract To determine the precision of standardized analytical methods, interlaboratory experiments are carried out in which several laboratories analyze identical samples from well homogenized batches of material. From the test results, estimates of the standard deviations under repeatability as well as under reproducibility conditions are calculated. In the present work, the experimental designs recommended in the International Standard ISO 5725 have been compared with a design proposed in the draft Netherlands Standard NEN 6303. This has been done by comparing their mathematical models as well as by applying them to the results of a recent collaborative study on the determination of heavy metals in edible oils and fats. The reproducibility standard deviation is estimated equally well with both Standards, but it appeared that the designs given in ISO 5725 can lead to serious underestimation (uniform-level design) or overestimation (split-level design) of the repeatability standard deviation. By using the design proposed in NEN 6303, these biases can be avoided. Hence, it is recommended that interlaboratory studies be organized according to the design of NEN 6303.


Sign in / Sign up

Export Citation Format

Share Document