Validation of Methods Used in the Florida Department of Agriculture and Consumer Services' Chemical Residue Laboratory

1991 ◽  
Vol 74 (5) ◽  
pp. 868-871 ◽  
Author(s):  
Gail Abbott Parker

Abstract Very few methods for detecting residues of pesticides in food or agricultural samples have undergone rigorous collaborative study and possess official AOAC status. The Chemical Residue Laboratory has formalized a method validation scheme to use when incorporating or developing new, unofficial methods. These methods are validated by assessing certain performance parameters: scope, specificity, linear range, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). For accuracy and precision assessment, 12 replicate fortifications must yield recoveries within the range of 70-120% with a coefficient of variation (CV) that compares favorably to the Horwitz CV. LOD and LOQ are equivalent to 3 and 10 times, respectively, the background signal contributed by a sample matrix blank. This criterion that we use for LOD/LOQ is not universal. In fact, because of differing definitions, we have encountered difficulties in enforcing a tolerance by using a registrant's method. This paper also presents an example of our method validation scheme, using a recent method development project for detecting sulfamethazine in raw milk. The sulfamethazine project also revealed unanticipated personnel problems, underscoring the importance of the human factor in quality assurance.

2021 ◽  
Vol 11 (2) ◽  
pp. 153-163
Author(s):  
Abhiram Dash ◽  
Neelu Jain ◽  
Harish Pandey

The objective of this research was to develop and validate a simple, specific and accurate reverse phase of high performance of liquid chromatographic method for the determination of levonorgestrel (LVG) and ethinylestradiol (EE) in tablets. The chromatographic system included column Sun Fire ODS (150 mm × 4.6 mm i.d., particle size at 5 μm), mobile phase consisting of acetonitrile: methanol: aquabidest (60:15:25) with the flow rate of 1 mL/minute and effluents monitored at 230 nm. The validation of RP HPLC method for the simultaneous determination of LVG and EE was determined by accuracy, precision, linearity, and limit of detection (LOD) as well as the limit of quantitation (LOQ) parameters. The linearity range of both drugs was 1-70 µg/mL and 2-14 µg/mL for LVG and EE, respectively. The recoveries of LVG and EE were at 101.78% and 102.44% with the coefficients of variation of 0.94% and 1.92%, successively. The LOD of LVG and EE value were of 0.84 µg/mL and 0.03 µg/mL, and LOQ value were of 2.79 and 0.09µg/mL, respectively. Keywords: Levonorgestrel (LVG), Ethinylestradiol, Method Validation, Method Validation, HPLC


2018 ◽  
Vol 68 (2) ◽  
pp. 171-183
Author(s):  
Béla Kovács ◽  
Lajos Kristóf Kántor ◽  
Mircea Dumitru Croitoru ◽  
Éva Katalin Kelemen ◽  
Mona Obreja ◽  
...  

Abstract A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20–320 μg mL−1 (R2 = 0.99998). Recovery, tested in the range of 40–120 μg mL−1, was found to be 96.1–102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0–1.4 and 1.2–1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL−1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.


Author(s):  
ILMA NUGRAHANI ◽  
STEPHANIE SULISTIANA ◽  
SLAMET IBRAHIM

Objective: This study was aimed to develop a rapid analysis using FTIR (Fourier Transform Infra-Red) for papaverine hydrochloride (HCl) determination in the hair sample, supported by a mathematically manipulation; which never been reported before in toxicology and forensic analysis. Methods: Firstly, the method was checked its validity to ensure the feasibility for the quantitative purpose. The absorbance spectrums were collected by measure the drug, matrix, and its mixture. A spectra which showed the best specificity and linearity then was selected and derived. Afterwards, the area under the curve (AUC) was measured. A series of concentration was used for compose the calibration curve. Based on the result, some validation parameters were checked thoroughly. Further, for sample preparation, hair was collected non-invasively, then was decontaminated using soap. Next, it was immersed into a papaverine HCl solution at a concentration of 25 mg/ml along days. Finally, the amount of drugs absorbed were measured by the developed method using FTIR. Results: Experimental data showed that all validation parameters could be fulfilled by the developed method. The selected spectra for the content determination was 1320-1230 cm-1. Its linearity was represented by a correlation coefficient value (r) ≥ 0.9999, variation coefficient (Vxo) ≤ 2.0%. The limit of detection (LOD) was 0.00618% w/w, meanwhile, the limit of quantitation (LOQ) was 0.02060% w/w, respectively. The percent recovery was in the range 97-103% with the relative standard deviation (RSD) was ≤ 2.0%. The drug has detected after 72 h immersion, moreover, after 192 h the concentration gained was 0.1594±0.0011% w/w. Conclusion: As the conclusion, FTIR absorbance-derivative method is adequate as a rapid procedure for determine papaverine HCl in the hair sample. This method shows the appropriate of specificity, accuracy and precise. In addition, it shows the advantages of simplicity, green/eco-friendlier, and cost-efficiency.


1998 ◽  
Vol 61 (11) ◽  
pp. 1579-1582 ◽  
Author(s):  
ROY P. BETTS ◽  
IRENE M. F. RENTENAAR

In recent years, food microbiologists have seen the development of a range of nonstandard methods designed to enumerate or determine the presence of various microorganisms in food products. Generally the new methods are designed to give the microbiologist advantages, such as greater automation or faster results, over standard conventional methods. The new methods, however, have often not been thoroughly tested to give the end user confidence in the results. In order to generate data to show that new methods give results that are comparable with standard methods, they must be validated. A number of validation schemes have been developed in various countries throughout the world. There has not, however, been an acceptable scheme recognized throughout Europe. The MicroVal project has been involved in the development of a European microbiological method validation and certification scheme; it involves 21 partners from 7 EU member States. New methods that are tested by the MicroVal system will undergo initial testing in a single expert laboratory, to establish the test's specificity, limit of detection, relative accuracy, sensitivity, and linearity. This testing will be followed by a collaborative study in a minimum of eight laboratories, which will be used to determine the test precision, repeatability, and reproducibility. All results will be assessed by two expert reviewers who will recommend or reject the test. Tests that are recommended will be finally accepted by a MicroVal committee. The committee will pass its comments to one of several certification bodies (working together through a memorandum of understanding) who will certify that the new method gives results that are equivalent to the reference method used throughout the validation work. The technical rules that describe the work required to certify a method are currently being considered by the European Committee for Standardization (CEN), with the objective that the rules will become a CEN standard for the certification of new test methods. When this objective has been achieved the rules will become an International Standards Organization (ISO) standard for new test method validation.


2020 ◽  
Vol 17 (34) ◽  
pp. 362-372
Author(s):  
Yosi ARISTIAWAN ◽  
Dillani PUTRI RAMADHANINGTYAS ◽  
Isna KOMALASARI ◽  
Dyah STYARINI ◽  
Nuryatini HAMIM

Organochlorine insecticides are still exploited among the most prominent pesticides for plant protection purposes. Known for having hazardous to humans and persistent in the environment properties, it is necessary to build an accurate method for detecting organochlorine insecticides in food and environmental substances. Isotope-dilution gas chromatography-mass spectrometry (ID-GC-MS) is a versatile coupling measurement system and high order method that combines both selectivity, sensitivity and high accuracy. The present paper aims at showing the methodology of the organochlorine insecticides (alpha-HCH and gamma-HCH) determination in ginseng by using ID-GC-MS. The described method covered sample preparation using an organic solvent (hexane) extraction, followed by florisil cleaning-up. After the reconstitution of the solvent base, the measurement was conducted by using ID-GC-MS in the optimal instrument parameter. Using the determined optimal conditions, the parameters such as sensitivity, linearity, precision, and accuracy were studied for validation of the ID-GC–MS method. The limit of detection and the limit of quantitation of the instrument were 0.5 ng/g and 2.0 ng/g for both analytes. The method showed linearity with the correlation coefficient of 0.999 for both alpha-HCH and gamma-HCH over the concentration range of 1‒300 ng/g. The precision ranged from 3.0 to 3.7% and 2.4 to 3.3% for alpha-HCH and gamma-HCH, respectively. The mean recoveries for alpha-HCH and gamma-HCH were found at 98.0 and 95.6%, respectively. Following method validation, the measurement uncertainty of the alpha-HCH and gamma-HCH determination was evaluated according to EURACHEM GUM guide at a 95 % confidence level (k = 2). The expanded uncertainty in the measurement of alpha-HCH and gamma-HCH was 5.4% and 8.2%, respectively. All these parameters demonstrate the high sensitivity of the offered method and the success of the described method in the determination of alpha-HCH and gamma-HCH in ginseng sample.


Author(s):  
WT Morgan ◽  
JB Reece ◽  
CH Risner ◽  
CB Bennett ◽  
CH Midgett ◽  
...  

AbstractThe manuscript presents results from a collaborative study by 15 different laboratories using two different methods to determine tobacco specific nitrosamines (TSNAs) in tobacco and was performed under the auspices of the Tobacco Science Research Conference Analytical Methods Committee (TSRC-AMC). Although it is apparent that some of the laboratories failed to follow the provided protocols, both methods proved robust for determining TSNAs in a variety of different tobacco types. Twelve laboratories extracted the tobacco sample using an alkaline-methylene chloride extraction (Method 1) and nine used a buffer to extract the tobacco sample (Method 2). Six laboratories performed both methods. All participants used gas chromatography (GC) to separate the TSNAs and chemiluminescence detection. Method 1 used N-hexyl-N-nitroso-1-hexanamine (NDHA) as a surrogate (added prior to extraction) internal standard for quantitation. Method 2 used N-nitrosoguvacoline (NG) as the surrogate internal standard, NDHA as a chromatographic (added after extraction, prior to analysis) internal standard and external standard quantitation. After demonstrating that the average accuracy of both methods was at least about 92% through recovery studies, eight different tobacco types were analyzed in triplicate by each method. Means, reproducibility (precision between laboratories) and repeatability (precision within a laboratory) of results were determined for each method. After statistical analyses, it was established that both methods were capable of analyzing a variety of tobacco types and repeatability between methods was not significantly different. The limit of detection (LOD) and limit of quantitation (LOQ) were lower for Method 2 as compared to Method 1 when using the surrogate internal standard. Reproducibility variation, analyzed as the coefficient of variation, was 6% lower for Method 2 vs. Method 1 for N-nitrosonornicotine (NNN) and directionally 12% lower for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Method 2 using NDHA as the chromatographic internal standard has been recommended by the TSRC-AMC for use as a reference method. However, Method 1 using NDHA as surrogate internal standard is favored by four of the study participants because of lower chemical and material costs and higher sample throughput.


2019 ◽  
Vol 57 (9) ◽  
pp. 769-777
Author(s):  
Nagaraju Rajana ◽  
Kaviaraj M Yarbagi ◽  
K Balakumaran ◽  
M V Madhubabu ◽  
J Mosesbabu ◽  
...  

Abstract Acetamide is a potential genotoxic impurity; it should control in drug substance based on daily dosage level. It forms from base-contaminated acetonitrile and by-product of some drug substances. The available methods for acetamide in drug substance and water samples were determined by GC-MS using internal standard with critical procedures. These developed and validated methods can assist in evaluating the reaction between acetonitrile and different bases and also determine trace level acetamide in drug substances. The method development was initiated with DB-624, 30 m, 0.32 width and 1.0-μm column. The column was used to validate at the 600 ppm TTC value. Similarly, the CP-SIL 5CB, 60 m, 0.32 width, the 5-μm column was used for the remaining TTC values. The validation study was performed for all TTC limits. The % RSD for precision at 600, 60, 20, 10 and 2.5 ppm was <15%. The % recovery at all TTC level was in between the 70 and 130%. Solution stability study was performed up to the 24 h. At 2.5 ppm, the results were <15% variation from the initial value. The linearities from the 50 to 150% concerning TTC values were more than limit of 0.98 correlation coefficient. The limit of detection and limit of quantitation values were 0.4 to the 1.3 ppm, respectively, for 2.5 ppm TTC limit method.


2019 ◽  
Vol 15 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Surendra Agrawal ◽  
Pravina Gurjar ◽  
Bhavik Katheriya

Introduction: Trimetazidine and Metoprolol combination is more effective in the treatment of cardiac disorders as compared to single drug therapy.Background: Materials and Methods: A rapid, simple, and sensitive HPTLC method was developed for the simultaneous determination of Trimetazidine and metoprolol from its tablet dosage form and validated. In HPTLC method, standard and sample solutions of Trimetazidine hydrochloride and metoprolol succinate were applied on pre-coated silica gel G 60 F254 TLC plate, and developed by using mobile phase, n-butanol :water: methanol: ammonia as solvent (8.5:0.1:0.1: 0.85, v/v). The drugs on plate were scanned at 213 nm. The method produced compact and well-resolved bands at Rf of 0.32 ± 0.02 and 0.66 ± 0.02 for Trimetazidine Hydrochloride and Metoprolol succinate respectively. The range for linearity was observed as 500-2500 ng band-1 for Trimetazidine hydrochloride and 500-2500 ng band-1 for metoprolol succinate and correlation coefficient were 0.9991 and 0.9997 respectively. Conclusion: The developed method was validated according to the ICH guidelines for precision, accuracy, Limit of detection, Limit of quantitation, specificity and robustness. The method was checked for suitability in determination of Trimetazidine hydrochloride and Metoprolol succinate in their tablet dosage form. The assay result was found to be 99.64 % ± 0.45 and 99.94 % ± 0.53 of percentage label claim for Trimetazidine hydrochloride and Metoprolol succinate respectively.


Author(s):  
Seema R. Nikam ◽  
Amol S. Jagdale ◽  
Sahebrao S. Boraste ◽  
Shrikant B Patil

Quantitatively measurements of chemical and biological drugs and their metabolites in the biological sample. This used in clinical and non-clinical studies. Non clinical including Pharmacokinetic and Toxic kinetic study, and clinical including Bioavailability, Bioequivalence study. This are play significant role and help in improvement in technology and analytical methods. Recent years have witnessed the introduction of several high- quality review articles into the literature covering various scientific and technical aspects of bioanalysis. Method validation and development use for the purpose of suitability of method for their intended purpose, this are important in Drug Discovery and Development. It including a validation parameters are Accuracy, Precision, Range, Calibration Curve, Recovery, Limit of Detection, Limit of Quantitation, Specificity, Selectivity and Stability, Ruggedness. This applicable in bio analysis, FDA and EMA guidelines. There are 3 main Extraction techniques used in sample preparation in bioanalysis is precipitation, liquid –liquid extraction, solid phase extraction. Detection of analyte by using hyphenated and chromatographic techniques like LC-MS/MS, HPLC, GC-MS. This LC-MS/MS is commonly used in a bioanalysis. This bio analysis study used in Pharmaceutical, Biomedical research purpose. Many challenges in pharmaceutical industry that fulfill by the utilization of analytical technologies and high-throughput automated platforms has been employed; in order to perform more experiments in a shorter time frame with increased data quality.


2019 ◽  
Vol 31 (1) ◽  
pp. 32-39
Author(s):  
Suman Shrivastava ◽  
Pooja Deshpande ◽  
S. J. Daharwal

Development of a method is crucial for discovery, development, and analysis of medicines in the pharmaceutical formulation. Method validation could also be thought to be one in all the foremost well-known areas in analytical chemistry as is reproduced within the substantial variety of articles submitted and presented in peer review journals every year. Validation of an analytical procedure is to demonstrate that it's appropriate for its intended purpose. Results from method validation are often wont to decide the quality, reliability and consistency of analytical results. Analytical methods need to be validated or revalidated. This review describes general approach towards validation process and validation parameters to be considered during validation of an analytical method. It also refers to various regulatory requirements like WHO, USFDA, EMEA, ICH, ISO/IEC. The parameters described here are according to ICH guidelines which include accuracy, precision, specificity, limit of detection, limit of quantification, linearity range and robustness.


Sign in / Sign up

Export Citation Format

Share Document