scholarly journals Stability and Recovery of Triazine and Chloroacetamide Herbicides from pH Adjusted Water Samples by Using Empore Solid-Phase Extraction Disks and Gas Chromatography with Ion Trap Mass Spectrometry

2001 ◽  
Vol 84 (4) ◽  
pp. 1070-1073 ◽  
Author(s):  
Thomas C Mueller ◽  
Scott A Senseman ◽  
Kathy H Carson ◽  
Audie S Sciumbato

Abstract Empore disks were used to successfully extract herbicide residues from a difficult-to-analyze surface water source and deionized water. Herbicide recoveries were lower in surface water at 7, 14, or 21 days after fortification and storage at 4°C, presumably due to chemical sorption onto precipitated organic particulates. The addition of acid to the samples, as recommended in EPA Method 525.2, did not affect recoveries of alachlor and metolachlor, but reduced recoveries of atrazine, simazine, and cyanazine. Treatment of water samples with sodium hypochlorite did not affect alachlor or metolachlor recoveries, but greatly reduced the recovery of all triazine herbicides. This indicates that addition of acid or sodium hypochlorite to water samples may be detrimental to triazine analysis.

2002 ◽  
Vol 85 (6) ◽  
pp. 1324-1330 ◽  
Author(s):  
Wondi Mersie ◽  
Chris Clegg ◽  
R Don Wauchope ◽  
Jose A Dumas ◽  
Ross B Leidy ◽  
...  

Abstract An interlaboratory study was conducted to assess the suitability of C18 solid-phase extraction disks to retain and ship different pesticides from water samples. Surface and deionized water samples were fortified with various pesticides and extracted using C18 disks. Pesticides were eluted from disks and analyzed in-house, or disks were sent to another laboratory where they were eluted and analyzed. Along with the disks, a standard pesticide solution in methanol was also shipped to be used for fortification, extraction, and analysis. The highest recovery from deionized or surface water using shipped disks was obtained for cyanazine (>97%), followed by metalaxyl (>96%), and atrazine (>92%). Although <40% of the bifenthrin, chlorpyrifos, and chlorothalonil fortified in surface water was recovered from shipped disks, recoveries from deionized water were >70%. From in-house eluted disks, bifenthrin and chlorpyrifos were recovered at 118 and 105%, whereas chlorothalonil showed 71% recovery, indicating that poor recovery from surface water was due to loss during shipping rather than low retention by the C18 disks. There was no consistent relationship between recovery from C18 disk and physicochemical properties for the pesticides included in this study. For most of the 13 pesticides tested, there were no differences in recovery between in-house extracted disks and shipped disks, indicating the suitability of disks to concentrate and transport pesticides extracted from water samples.


Author(s):  
Kamran Bashir ◽  
Zhimin Luo ◽  
Guoning Chen ◽  
Hua Shu ◽  
Xia Cui ◽  
...  

Griseofulvin (GSF) is clinically employed to treat fungal infections in humans and animals. GSF was detected in surface waters as a pharmaceutical pollutant. GSF detection as an anthropogenic pollutant is considered as a possible source of drug resistance and risk factor in ecosystem. To address this concern, a new extraction and enrichment method was developed. GSF-surface molecularly imprinted polymers (GSF-SMIPs) were prepared and applied as solid phase extraction (SPE) sorbent. A dispersive solid phase extraction (DSPE) method was designed and combined with HPLC for the analysis of GSF in surface water samples. The performance of GSF-SMIPs was assessed for its potential to remove GSF from water samples. The factors affecting the removal efficiency such as sample pH and ionic strength were investigated and optimized. The DSPE conditions such as the amount of GSF-SMIPs, the extraction time, the type and volume of desorption solvents were also optimized. The established method is linear over the range of 0.1–100 µg/mL. The limits of detection and quantification were 0.01 and 0.03 µg/mL respectively. Good recoveries (91.6–98.8%) were achieved after DSPE. The intra-day and inter-day relative standard deviations were 0.8 and 4.3% respectively. The SMIPs demonstrated good removal efficiency (91.6%) as compared to powder activated carbon (67.7%). Moreover, the SMIPs can be reused 10 times for water samples. This is an additional advantage over single-use activated carbon and other commercial sorbents. This study provides a specific and sensitive method for the selective extraction and detection of GSF in surface water samples.


2014 ◽  
Vol 182 (1-2) ◽  
pp. 95-103 ◽  
Author(s):  
Soraya Dahane ◽  
María Dolores Gil García ◽  
Ana Uclés Moreno ◽  
María Martínez Galera ◽  
María del Mar Socías Viciana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document