scholarly journals Determination of Indoxacarb Enantiomer Residues in Vegetables, Fruits, and Soil by High-Performance Liquid Chromatography

2010 ◽  
Vol 93 (3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Li Cheng ◽  
Feng-Shou Dong ◽  
Xingang Liu ◽  
Wuying Chen ◽  
Yuanbo Li ◽  
...  

Abstract An effective chiral analytical method was developed for the resolution and determination of indoxacarb enantiomers in cucumber, tomato, apple, pear, and soil samples. Indoxacarb enantiomers were separated on a Chiralpak AS-H column with n-hexaneethanol (95 + 5, v/v) as the mobile phase. Validation involved complete resolution of each enantiomer, plus determination of linearity, precision, LOD, and LOQ. The estimated LOD was 0.0250.035 mg/kg, and the LOQ was 0.05 mg/kg for each indoxacarb enantiomer in different matrixes. The average recoveries of the pesticide from all matrixes ranged from 87.0 to 116.9 for fortification levels of 0.05, 0.1, and 5 mg/kg. The precision values associated with the analytical method, expressed as RSDr values, were <10.1 for the pesticide in all matrixes. This method can be used to evaluate environmental residues and the safety of agricultural products.

2010 ◽  
Vol 3 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Sophi Damayanti ◽  
Slamet Ibrahim ◽  
Kurnia Firman ◽  
Daryono H Tjahjono

Analytical method for the determination of paracetamol and ibuprofene mixtures has been developed by High Performance Liquid Chromatography using C-18 column and acetinitrile - phosphate buffer pH = 4.5 (75:25) containing 0.075% sodium hexanesulfunate as a mobile phase. The detector was set at 215 nm. Using such conditions, retention time for paracetamol and ibuprofen was 4.89 and 7.11 min, respectively. The recovery for paracetamol and ibuprofen was found to be 101.07± 0.73% and 102.02 ± 1.58%, respectively. The detector limits of the method was 1.30 and 1.60 μg/mL with the relative standard deviation (RSD) 0.74 and 1.52% for paracetamol and ibuprofen, respectively.   Keywords: paracetamol, ibuprofen, multi-component, validation, HPLC.


Author(s):  
Appasaheb Bajirao Lawande

ABSTRACT Objective:  The objective of the this work is to develop and validate a novel, simple,rapid and reliable analytical method for separation and determination of R-isomer impurity in Etodolac bulk drug material by normal-phase high-performance liquid chromatography as per International Conference on Harmonization guidelines. Methods: The Etodolac R- isomer and S-isomer were separated on a Chiralcel OD-H (150 x 4.0 mm, 5 micron) column by using Ethanol : n-Hexane:Trifluoroacetic acid (50:50:0.1 v/v.) mobile phase with equipped detector at wavelength 225 nm and 25 °C column oven temperature. The resolution between R-isomer and S-isomer were more than two recorded on chromatogram. The specified method was developed and validated for various parameters like reproducibility, limit of detection, limit of quantification, linearity and range, robustness, solution stability and mobile phase stability according to the International Conference on Harmonization (ICH) guidelines.  Results: Linearity were found for Etodolac R-isomer over the concentration range of 600–6000 ng/ml, with the linear regression (Correlation coefficient R = 0.998) and proved to be robust. Limit of detection and limit of quantification of Etodolac R-isomer was found to be 200 and 600 ng/ml. The retention time of R-isomer was considered to be 2.8 min. The percentage recovery of Etodolac R-isomer has been ranged from 97.0 to 102.0 in bulk drug material sample. The proposed analytical method has been found to be suitable, precise,reliable and accurate for the separation and quantitative determination of Etodolac R-isomer in bulk drug sample.                                                                                                                   Conclusion: A novel, speedy, accurate, precise, reliable and rugged analytical method has been developed and validated for normal phase high performance liquid chromatography to determine R-isomer impurity in Etodolac bulk drugs material as per ICH guideline. Keywords: Etodolac, HPLC, Known Impurity. Normal Phase, Validation.


1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


2021 ◽  
Vol 66 (3) ◽  
pp. 172-176
Author(s):  
Lyubov Borisovna Kalikova ◽  
E. R. Boyko

Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC. The degree of separation of adenine nucleotides was estimated by the time of peak output in the chromatogram. To achieve the goal, the following tasks were set: assess the effect of the temperature of the analysis on the separation and change of the release time of the analytes in the chromatogram; determine the most optimal composition of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram (the content of the organic solvent in the solution); to identify the effect of pH of the mobile phase on the separation of standard solutions of adenine nucleotides; set the optimal molarity of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram. It was found that the temperature of the analysis does not affect the quality of peak separation, while the composition and pH of the mobile phase have a significant effect on the complete and clear separation of the studied nucleotides in the chromatogram. It was determined that the analysis temperature of 37°C and the mobile phase of 0.05 M KH2PO4 (pH 6.0) are optimal for separating the peaks of adenine nucleotides.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


Sign in / Sign up

Export Citation Format

Share Document