129 Effects of Bacillus Subtilis on Growth Performance, Diarrhea, and Gut Health of Weanling Pigs Experimentally Infected with F18 Escherichia coli.

2018 ◽  
Vol 96 (suppl_2) ◽  
pp. 68-69 ◽  
Author(s):  
K Kim ◽  
C Jinno ◽  
A Ehrlich ◽  
X Li ◽  
J N Jøergensen ◽  
...  
2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Sangwoo Park ◽  
Jung Wook Lee ◽  
Kevin Jerez Bogota ◽  
David Francis ◽  
Jolie Caroline González-Vega ◽  
...  

Abstract This study was conducted to investigate the effects of a direct-fed microbial (DFM) product (Bacillus subtilis strain DSM 32540) in weaned pigs challenged with K88 strain of Escherichia coli on growth performance and indicators of gut health. A total of 21 weaned pigs [initial body weight (BW) = 8.19 kg] were housed individually in pens and fed three diets (seven replicates per diet) for 21 d in a completely randomized design. The three diets were a corn-soybean meal-based basal diet without feed additives, a basal diet with 0.25% antibiotics (neo-Oxy 10-10; neomycin + oxytetracycline), or a basal diet with 0.05% DFM. All pigs were orally challenged with a subclinical dose (6.7 × 108 CFU/mL) of K88 strain of E. coli on day 3 of the study (3 d after weaning). Feed intake and BW data were collected on days 0, 3, 7, 14, and 21. Fecal scores were recorded daily. On day 21, pigs were sacrificed to determine various indicators of gut health. Supplementation of the basal diet with antibiotics or DFM did not affect the overall (days 0–21) growth performance of pigs. However, antibiotics or DFM supplementation increased (P = 0.010) gain:feed (G:F) of pigs during the post-E. coli challenge period (days 3–21) by 23% and 24%, respectively. The G:F for the DFM-supplemented diet did not differ from that for the antibiotics-supplemented diet. The frequency of diarrhea for pigs fed a diet with antibiotics or DFM tended to be lower (P = 0.071) than that of pigs fed the basal diet. The jejunal villous height (VH) and the VH to crypt depth ratio (VH:CD) were increased (P < 0.001) by 33% and 35%, respectively, due to the inclusion of antibiotics in the basal diet and by 43% and 41%, respectively due to the inclusion of DFM in the basal diet. The VH and VH:CD for the DFM-supplemented diet were greater (P < 0.05) than those for the antibiotics-supplemented diet. Ileal VH was increased (P < 0.05) by 46% due to the inclusion of DFM in the basal diet. The empty weight of small intestine, cecum, or colon relative to live BW was unaffected by dietary antibiotics or DFM supplementation. In conclusion, the addition of DFM to the basal diet improved the feed efficiency of E. coli-challenged weaned pigs to a value similar to that of the antibiotics-supplemented diet and increased jejunal VH and VH:CD ratio to values greater than those for the antibiotics-supplemented diet. Thus, under E. coli challenge, the test DFM product may replace the use of antibiotics as a growth promoter in diets for weaned pigs to improve feed efficiency and gut integrity.


2018 ◽  
Vol 98 (3) ◽  
pp. 538-547 ◽  
Author(s):  
Jeong Hee Han ◽  
Min Hye Song ◽  
Ha Na Kim ◽  
Insurk Jang ◽  
C. Young Lee ◽  
...  

Effects of a lipid-coated zinc oxide (ZnO) Shield Zn® (SZ) vs. ZnO were evaluated. Forty 25-d-old weanling pigs were fed a nursery diet supplemented with 100 mg kg−1 Zn with ZnO (ZnO-100), ZnO-2500, SZ-100, -200, or -400. All piglets were challenged orally with 5 × 108 colony-forming units of enterotoxigenic Escherichia coli K88 on day 7 and euthanized on day 14. The fecal consistency score (FCS) was less for the SZ group vs. ZnO-100 (P < 0.05). The intestinal villus height:crypt depth ratio and goblet cell density were greater for the SZ group vs. ZnO-100. By regression analyses, SZ-100 to -200 and SZ-300 to -400 were comparable to ZnO-2500 in the FCS and intestinal variables, respectively. The jejunal mucosal mRNA level did not differ between the SZ group and either ZnO group in insulin-like growth factor-I and multiple structural proteins and cytokines including zonula occludens protein (ZO) 1 and interleukin (IL) 10 except for lower ZO-1 and IL-10 mRNA levels for the SZ group than for ZnO-2500 and ZnO-100, respectively. The ZO-1 mRNA level regressed positively on the supplemental SZ concentration. Results suggest that SZ play a role in epithelial barrier function and inflammation by modulating the expression of ZO-1 and IL-10.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 84-85
Author(s):  
Sue Sinn ◽  
Ran Song ◽  
Dana Beckler ◽  
Rob Musser ◽  
Kim Friesen

Abstract A mineral-based feed additive, NutriQuest Protect™, was evaluated in five artificial Enterotoxigenic Escherichia coli (ETEC) challenge experiments to determine the effects on pig growth performance, fecal consistency and immune response. The five experiments were conducted following a similar procedure and utilized a total of 232 weanling pigs (19 d of age) assigned to one of three experimental treatments: non-challenged control (NC), challenged control (CC), and challenged pigs fed Protect at 4.0 g/kg (CP) with 36, 36, and 44 pens per treatment, respectively. Pharmacological ZnO or medications were not included in any diets. Pigs were allowed a 7-d adaptation period following weaning, orally inoculated with E. coli K88 or F18 on 0 d post-inoculation (dpi) and 1-dpi. Studies were concluded on 4-dpi. Pig BW and feed disappearance were measured on 0-dpi and 4-dpi. Serum samples were collected on 0 and 4-dpi to measure porcine proinflammatory cytokines. Fecal scores were measured daily over the challenge period. Data from the five experiments were compiled for meta-analysis using the MIXED procedure of SAS. The NC pigs had a greater ADG (0.09 vs. -0.01 kg/d, P = 0.002), ADFI (0.24 vs. 0.21 kg/d, P = 0.09), and final BW (6.8 vs. 6.5 kg, P < 0.05). Diarrhea frequency was significantly higher in CC pigs compared with pigs on CP and NC treatments (28.5 vs. 18.7 vs. 5.3%, P < 0.05). Results from the five experiments suggest that NutriQuest Protect™ improves growth performance and reduces inflammation and diarrhea in weaned pigs artificially challenged with E. coli K88 or F18.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yijie He ◽  
Cynthia Jinno ◽  
Kwangwook Kim ◽  
Zhaohai Wu ◽  
Bie Tan ◽  
...  

Abstract Background Previous research has shown that dietary supplementation of Bacillus spp. probiotics exerts beneficial effects on animals’ growth. However, limited studies have evaluated the efficacy of Bacillus spp. on weaned pigs and their effects on host gut health and microbiome, and systemic immunity using a disease challenge model. The objective of this experiment was to investigate the effects of two Bacillus spp. strains (Bacillus subtilis DSM 32540 and Bacillus pumilus DSM 32539) on growth performance, diarrhea, intestinal health, microbiome, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC). Results Pigs in PRO1 (Bacillus subtilis DSM 32540) had greater (P < 0.05) body weight on d 7 and 14 PI, greater (P < 0.05) ADG from d 0 to 7 and d 7 to 14 PI, compared with pigs in CON (Control). Pigs in PRO1 had milder (P < 0.05) diarrhea on d 2 and 3 PI compared with pigs in CON. However, no differences were observed in growth performance and diarrhea score between PRO2 (Bacillus pumilus DSM 32539) and CON groups. Supplementation of PRO1 decreased (P < 0.05) lymphocyte counts on d 7 and 14 PI, compared with CON. Supplementation of PRO1 and PRO2 both reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 21 PI. Pigs in PRO2 had greater (P < 0.05) goblet cell number and sulfomucin percentage in duodenal villi and greater (P < 0.05) sialomucin percentage in jejunal villi than pigs in CON. Supplementation of PRO1 up-regulated (P < 0.05) MUC2 gene expression in jejunal mucosa and reduced (P < 0.05) PTGS-2 and IL1B gene expression in ileal mucosa on d 21 PI, compared with CON. Pigs in PRO1 had reduced (P < 0.05) relative abundance of families Lachnospiraceae, Peptostreptococcaceae and Pasteurellaceae in the ileum. Conclusions Supplementation of Bacillus subtilis DSM 32540 improved growth performance, alleviated diarrhea severity, enhanced gut health, and reduced systemic inflammation of weaned pigs infected with ETEC F18. Although Bacillus pumilus DSM 32539 was able to alleviate systemic inflammation, it had limited impacts on growth performance and severity of diarrhea of ETEC F18 challenged weaned pigs.


Sign in / Sign up

Export Citation Format

Share Document