Aphid Feeding on Plant Lectins Falling Virus Transmission Rates: A Multicase Study

2020 ◽  
Vol 113 (4) ◽  
pp. 1635-1639
Author(s):  
Frederic Francis ◽  
Julian Chen ◽  
Liu Yong ◽  
Emilie Bosquee

Abstract Aphids are insect vectors that have piercing–sucking mouthparts supporting diversified patterns of virus–vector interactions. Aphids primarily retain circulative viruses in the midgut/hindgut, whereas noncirculative viruses tend to be retained in the stylet. Most viruses, and many proteins from animals, have carbohydrate or carbohydrate-binding sites. Lectins vary in their specificity, of which some are able to bind to viral glycoproteins. To assess the potential competition between lectins and viral particles in virus transmission by aphids, this study examined how feeding plant lectins to aphids affects the transmission efficiency of viruses. Sitobion avenae (F, 1794) (Homoptera: Aphididae) aphids fed with Pisum sativum lectin (PSL) transmitted Barley yellow dwarf virus with significantly lower efficiency (four-fold ratio). Pea enation mosaic virus was significantly reduced in Acyrthosiphon pisum Harris (Homoptera: Aphididae) aphids fed with the lectin Concanavalin A. In comparison, the transmission of Potato virus Y was significantly reduced when Myzus persicae Sultzer (Homoptera: Aphididae) aphids were fed with PSL. Thus, lectin could be used as a blocking agent of plant viruses, facilitating an alternative approach for crop protection.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Chuan Shen ◽  
Caiyan Wei ◽  
Jingyuan Li ◽  
Xudong Zhang ◽  
Qinrong Zhong ◽  
...  

Abstract Background Wheat yellow dwarf virus disease is infected by barley yellow dwarf virus (BYDV), which causes leaf yellowing and dwarfing symptoms in wheat, thereby posing a serious threat to China's food production. The infection of plant viruses can produce large numbers of vsiRNAs, which can target host transcripts and cause symptom development. However, few studies have been conducted to explore the role played by vsiRNAs in the interaction between BYDV-GAV and host wheat plants. Methods In this study, small RNA sequencing was conducted to profile vsiRNAs in BYDV-GAV-infected wheat plants. The putative targets of vsiRNAs were predicted by the bioinformatics software psRNATarget. RT-qPCR and VIGS were employed to identify the function of selected target transcripts. To confirm the interaction between vsiRNA and the target, 5′ RACE was performed to analyze the specific cleavage sites. Results From the sequencing data, we obtained a total of 11,384 detected vsiRNAs. The length distribution of these vsiRNAs was mostly 21 and 22 nt, and an A/U bias was observed at the 5′ terminus. We also observed that the production region of vsiRNAs had no strand polarity. The vsiRNAs were predicted to target 23,719 wheat transcripts. GO and KEGG enrichment analysis demonstrated that these targets were mostly involved in cell components, catalytic activity and plant-pathogen interactions. The results of RT-qPCR analysis showed that most chloroplast-related genes were downregulated in BYDV-GAV-infected wheat plants. Silencing of a chlorophyll synthase gene caused leaf yellowing that was similar to the symptoms exhibited by BYDV-GAV-inoculated wheat plants. A vsiRNA from an overlapping region of BYDV-GAV MP and CP was observed to target chlorophyll synthase for gene silencing. Next, 5′ RACE validated that vsiRNA8856 could cleave the chlorophyll synthase transcript in a sequence-specific manner. Conclusions This report is the first to demonstrate that BYDV-GAV-derived vsiRNAs can target wheat transcripts for symptom development, and the results of this study help to elucidate the molecular mechanisms underlying leaf yellowing after viral infection.


2019 ◽  
Vol 112 (5) ◽  
pp. 2067-2076
Author(s):  
Dandan Li ◽  
Dan Su ◽  
Zeqian Tong ◽  
Chi Zhang ◽  
Gaisheng Zhang ◽  
...  

Abstract Most plant viruses maintain complex interactions with their vector or nonvector insects and can indirectly (via host plants) or directly affect the fitness of insects. However, little is known about the genes involved in the interactions between insects and transmitted or nontransmitted viruses, particularly nontransmitted viruses. Sitobion avenae (Fabricius) is a vector of barley yellow dwarf virus GAV strains (BYDV-GAV), but not a vector of wheat dwarf virus (WDV), which is transmitted by the leafhopper [Psammotettix alienus (Dahlbom)]. In this study, S. avenae was utilized to determine the transcriptomic responses after feeding on wheat infected by each of the two viruses, respectively, using an Illumina Hiseq sequencing platform. The transcriptomic data presented 61,508 genes, of which 854 differentially expressed. Moreover, in addition to sharing 208 genes, the number of differentially expressed genes (DEGs) in S. avenae exposed to BYDV was higher (800) than that when exposed to WDV (262). The DEGs related to the immune system and fitness of S. avenae in response to BYDV-/WDV-infected plants were identified and analyzed using Gene Ontologies (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the number of related DEGs was lower as nonvector than as vector. This study provides the baseline information to further examine molecular mechanisms of how wheat viruses affect S. avenae fitness and immune response either as a vector for BYDV-GAV or as a nonvector for WDV.


2014 ◽  
Vol 65 (9) ◽  
pp. 841 ◽  
Author(s):  
P. L. Guy

This article reviews knowledge of 23 plant viruses infecting pasture grasses and legumes in New Zealand. The incidence, ecology and impact of each virus and prospects for control using natural or artificial resistance genes or by vector control is discussed. The most prevalent viruses are Alfalfa mosaic virus and White clover mosaic virus in pasture legumes and Cocksfoot mottle virus, Ryegrass mosaic virus and Barley yellow dwarf virus in pasture grasses. Lucerne Australian latent virus is restricted to the North Island and Red clover necrotic mosaic virus is largely restricted to the South Island. These patterns are likely to be dynamic with ongoing changes in weather patterns, land use, the spread of insect vectors and the continuing introduction of viruses and vectors. The existing and potential threats to 12 pasture species are tabulated and the knowledge gaps for each species highlighted. Control of vectors including aphids, eriophyid mites and soil-borne fungi is probably not economic per se but could be an additional benefit of integrated pest management in pasture and cropping systems. The most cost-effective and practical preventative measures are likely to be the use of virus-tested seed to establish new pastures and the incorporation of resistance genes by conventional breeding or by genetic engineering. Finally, recommendations are made for future research for New Zealand, which is also relevant to other temperate regions of the world.


2020 ◽  
Author(s):  
Chuan Shen ◽  
Caiyan Wei ◽  
Jingyuan Li ◽  
Xudong Zhang ◽  
Qinrong Zhong ◽  
...  

Abstract Background: Wheat yellow dwarf virus disease was infected by barley yellow dwarf virus, caused leaf yellowing and dwarfing symptoms in wheat, posing a serious threat to China's food production. Infection of plant viruses can produce a large number of vsiRNAs, which can target host transcripts for symptoms development. However, few studies were conducted to explore the role of vsiRNAs in the interaction between BYDV-GAV and host wheat plants.Methods: In this study, small RNA sequencing was conducted to profile the vsiRNAs in BYDV-GAV infected wheat plants. The putative targets of vsiRNAs were predicted by bioinformatics software. RT-qPCR and VIGS were used to identify the function of selected target transcripts. To confirm the interaction between vsiRNA and the target, 5’RACE was performed to analyze the specific cleavage sites. Results: From the sequencing data, we obtained a total of 11,384 detected vsiRNAs. The length distribution of these vsiRNAs mostly was 21- and 22-nt along with A/U biased at the 5 ' -terminal. We also found the production region of vsiRNAs had no strand polarity. The vsiRNAs were predicted to target 23,719 wheat transcripts. GO and KEGG enrichment analysis revealed that these targets mostly involved in cell parts and catalytic activity and plant-pathogen interaction. The results of RT-qPCR indicted that most chloroplast-related genes showed down-regulation in BYDV-GAV infected wheat plants. Silencing of a chlorophyll synthase caused leaf yellowing that was similar to the symptom of BYDV-GAV inoculated wheat plants. A vsiRNA from an overlap region of BYDV-GAV MP and CP was found that could target the chlorophyll synthase for gene silencing. Then, 5’RACE validated that vsiRNA8856 could cleavage the chlorophyll synthase transcript in a sequence-specific manner.Conclusion: This is the first report demonstrating that BYDV-GAV-derived vsiRNAs can target wheat transcripts for symptom development, and this study provides new insights into the molecular mechanisms underlying leaf yellowing upon viral infection.


2006 ◽  
Vol 96 (8) ◽  
pp. 828-837 ◽  
Author(s):  
M. E. Burrows ◽  
M. C. Caillaud ◽  
D. M. Smith ◽  
E. C. Benson ◽  
F. E. Gildow ◽  
...  

Sexual forms of two genotypes of the aphid Schizaphis graminum, one a vector, the other a nonvector of two viruses that cause barley yellow dwarf disease (Barley yellow dwarf virus [BYDV]-SGV, luteovirus and Cereal yellow dwarf virus-RPV, polerovirus), were mated to generate F1 and F2 populations. Segregation of the transmission phenotype for both viruses in the F1 and F2 populations indicated that the transmission phenotype is under genetic control and that the parents are heterozygous for genes involved in transmission. The ability to transmit both viruses was correlated within the F1 and F2 populations, suggesting that a major gene or linked genes regulate the transmission. However, individual hybrid genotypes differed significantly in their ability to transmit each virus, indicating that in addition to a major gene, minor genes can affect the transmission of each virus independently. Gut and salivary gland associated transmission barriers were identified in the nonvector parent and some progeny, while other progeny possessed only a gut barrier or a salivary gland barrier. Hemolymph factors do not appear to be involved in determining the transmission phenotype. These results provide direct evidence that aphid transmission of luteoviruses is genetically regulated in the insect and that the tissue-specific barriers to virus transmission are not genetically linked.


2016 ◽  
Vol 29 (3) ◽  
pp. 156-164 ◽  
Author(s):  
W. Allen Miller ◽  
Ruizhong Shen ◽  
William Staplin ◽  
Pulkit Kanodia

Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like ‘sponges’ that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5′ to 3′ degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host’s RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race.


Sign in / Sign up

Export Citation Format

Share Document