scholarly journals Optimization of Mass-Rearing Methods for Anopheles arabiensis Larval Stages: Effects of Rearing Water Temperature and Larval Density on Mosquito Life-History Traits

2018 ◽  
Vol 111 (5) ◽  
pp. 2383-2390 ◽  
Author(s):  
Wadaka Mamai ◽  
Leanne N Lobb ◽  
Nanwintoum S Bimbilé Somda ◽  
Hamidou Maiga ◽  
Hanano Yamada ◽  
...  
2001 ◽  
Vol 133 (5) ◽  
pp. 721-724 ◽  
Author(s):  
D.A. Raworth

Stethorus punctillum Weise (Coleoptera: Coccinellidae) is a Palearctic species first found in North America in the 1940s (Putman 1955). Commercial mass-rearing methods were developed in the late 1990s (Agriculture and Agri-Food Canada, London, Ontario, and Applied Bio-nomics Ltd, Saanich, British Columbia). The beetle is now released in North America to control two-spotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae). Knowledge of the life-history traits of S. punctillum is necessary for effective use of the predator in greenhouses. Putman (1955) provides useful information, but his results cannot be readily interpreted with respect to larval voracity, lower developmental temperature threshold, and developmental time in degreedays (°d), traits that affect efficacy. In this note I report new results relating to these life-history traits and to beetle releases in greenhouse vegetable crops.


2021 ◽  
pp. 1-12
Author(s):  
N.F. Addeo ◽  
C. Li ◽  
T.W. Rusch ◽  
A.J. Dickerson ◽  
A.M. Tarone ◽  
...  

Population growth and rapid urbanisation have increased the global demand for animal feed and protein sources. Therefore, traditional animal feed production should be increased through the use of alternative nutrient sources. Insects as feed are beginning to fill this need. One such insect is the black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae). However, to more effectively mass produce the black soldier fly, a better understanding of its thermal biology is needed. Thus, the aim of this study was to evaluate the impact of age, size, and sex on adult black soldier fly thermal preference. The thermal preference of adult black soldier flies was determined by exposing flies to a thermal gradient with a range of surface temperatures and monitoring their positions over time. An aluminium plate was used to create a linear thermal gradient where surface temperatures ranged from ~15-60 °C. Flies were distinguished by age (1-d-post-emergence vs 7-d-post-emergence), size (large vs small) and sex (male vs female) to assess whether thermal preference differed by specific life-history traits. Thermal preference for 7-d-post-emergence adults was significantly lower (19.2 °C) than 1-d-post-emergence adults (28.7 °C), respectively. Similarly, small adults selected significantly cooler (21.1 °C) temperatures than large adults (26.9 °C). No significant differences in thermal preferences were found between sex, regardless of age or size. In fact, males and females had similar thermal preference of 23.8 and 24.2 °C, respectively. This study reveals that multiple life-history traits of adult black soldier fly affect their thermal preference, and thus should be taken into consideration by mass rearing facilities to optimize production.


Author(s):  
Michael Belitz ◽  
Vijay Barve ◽  
Joshua Doby ◽  
Maggie Hantak ◽  
Elise Larsen ◽  
...  

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates, and overall activity duration. We used community-science and museum specimen data to investigate the effects of climate and urbanization on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Multivoltine and univoltine species both extended their period of adult activity similarly in warmer conditions. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments is likely underreported. This effort provides a framework to address drivers of adult insect phenology at continental scales, and a basis for predicting species response to environmental change.


1993 ◽  
Vol 71 (3) ◽  
pp. 568-578 ◽  
Author(s):  
D. Dudley Williams ◽  
Annette Tavares-Cromar ◽  
Donn J. Kushner ◽  
John R. Coleman

The relationship between the biology and habitat of larval mosquitoes was studied in a series of artificial ponds of differing characteristics established across a terrestrial vegetation gradient from open fields to deep woods. The ponds were uniformly colonized by two widespread species of Culex, both characteristic of small bodies of water, including artificial, "container" habitats. First-instar larvae of Culex restuans were found within 2 days of filling the ponds with water and four or five generations were produced from May until the end of September. One very long generation occurred in July, which corresponded to maximum larval densities. Overall, there was a strong relationship between larval development time of C. restuans and larval density. A few larvae of Culex pipiens pipiens occurred sporadically throughout the summer, but numbers did not increase until C. restuans populations began to wane in late July. Thereafter two, or possibly three, generations were produced into the autumn. The patterns of colonization, synchrony of life history, and growth of these two species were remarkably consistent amongst the ponds, despite considerable variation in both their physical and biological environments (e.g., over the 2 years of study, conductivity ranged from 20 to 890 μS, pH from 6.4 to 10.7, dissolved oxygen from 0 to 13.5 ppm, and water temperature from 5 to 29.8 °C). Density of C. restuans was related to water temperature and pH at the "open" site and to water temperature, dissolved oxygen, percent algae, and percent detritus at the "edge of the woods" site. At the "deep woods" site, larval numbers were related to temperature, pH, conductivity, and dissolved oxygen. At both the edge and deep wood sites, larval development time of C. restuans increased with mean water temperature to 20 °C. Above this temperature, larval development time tended to decrease.


2020 ◽  
Vol 34 (5) ◽  
pp. 659-680 ◽  
Author(s):  
Anh The Than ◽  
Fleur Ponton ◽  
Juliano Morimoto

Abstract Population density modulates a wide range of eco-evolutionary processes including inter- and intra-specific competition, fitness and population dynamics. In holometabolous insects, the larval stage is particularly susceptible to density-dependent effects because the larva is the resource-acquiring stage. Larval density-dependent effects can modulate the expression of life-history traits not only in the larval and adult stages but also downstream for population dynamics and evolution. Better understanding the scope and generality of density-dependent effects on life-history traits of current and future generations can provide useful knowledge for both theory and experiments in developmental ecology. Here, we review the literature on larval density-dependent effects on fitness of non-social holometabolous insects. First, we provide a functional definition of density to navigate the terminology in the literature. We then classify the biological levels upon which larval density-dependent effects can be observed followed by a review of the literature produced over the past decades across major non-social holometabolous groups. Next, we argue that host-microbe interactions are yet an overlooked biological level susceptible to density-dependent effects and propose a conceptual model to explain how density-dependent effects on host-microbe interactions can modulate density-dependent fitness curves. In summary, this review provides an integrative framework of density-dependent effects across biological levels which can be used to guide future research in the field of ecology and evolution.


2019 ◽  
Vol 112 (6) ◽  
pp. 505-510 ◽  
Author(s):  
Brittny M Jones ◽  
Jeffery K Tomberlin

Abstract The black soldier fly, Hermetia illucens (L.), is economically important due to its use in waste management and as an alternative protein source for livestock, poultry, and aquaculture. While industry promotes mass production of the black soldier fly, little is known about the impact of larval competition on development time, resulting immature and adult weight, or adult longevity. The goal of this research was to examine the life-history traits of black soldier flies when reared at four densities (500, 1,000, 1,500, and 2,000 larvae/4-liter container) provided 54-g Gainesville diet at 70% moisture (feed rates of 0.027, 0.036, 0.054, and 0.108 g) every other day. Results were as expected with the lowest larval density (500) producing heavier individuals (by 26%) than the greatest larval density (2,000) across all life stages. In addition to weights, larvae reared at the lowest density developed 63% faster than those reared at the greatest density. In regard to pupal development time, those reared at the lowest larval density developed 3% slower than the greatest density. A 21% difference between the two extreme densities was found in survivorship to prepupal stage, with the lowest larval density having the greatest survivorship (92%) compared with the greatest larval density (70%). All densities displayed over 90% adult emergence rates. Such information is vital for optimization of the process of converting waste products to protein at an industrial scale with the black soldier fly.


2008 ◽  
Vol 98 (5) ◽  
pp. 431-436 ◽  
Author(s):  
A. Carron ◽  
L. Bichaud ◽  
N. Platz ◽  
D.J. Bicout

AbstractThe larval survival and development times of Aedes caspius (Diptera: Culicidae) were examined in the laboratory. These life history traits were estimated using life tables constructed for two populations, one of which had been subjected to a long-term larvicide control program. Traits were evaluated for eight different population densities. The effects of population, larval stage and larval density were investigated using a general linear model. Density was positively correlated with larval survival but did not affect development time. The fourth instar and pupae had the lowest larval survival rates. First and fourth instar larvae had the longest development times. These traits were not significantly different between the two populations. The effect of larvicide control on these traits is discussed.


Sign in / Sign up

Export Citation Format

Share Document