scholarly journals Life-History Parameters of Striacosta albicosta (Lepidoptera: Noctuidae) Under Laboratory Conditions

2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Débora G Montezano ◽  
Thomas E Hunt ◽  
Alexandre Specht ◽  
Priscila M C Luz ◽  
Julie A Peterson

Abstract Striacosta albicosta (Smith) is a key pest of maize and dry beans in North America. It has expanded its distribution from the western Great Plains of the United States to the Great Lakes region in the United States and Canada. There has been limited research on the baseline biological aspects of this insect under controlled conditions. The objective of this study was to detail the biological parameters of S. albicosta feeding on an artificial diet under laboratory conditions. Overall survival from neonate to adult at 26.6 ± 1°C was 36.72% and the total developmental time was approximately 110 d. Survival of the egg, larval, prepupal, and pupal stages were 75.71, 98.50, 51.78, and 95.10%, respectively. Average duration of the egg, larval, prepupal, and pupal stages was 4.64, 28.20, 41.50, and 25.91 d, respectively. During the larval stage, 92.50% of larvae developed through seven instars and the remaining through six instars. Larvae that developed through six and seven instars exhibited a mean growth ratio of 1.60 and 1.47, respectively; however, there was no difference in pupal weight. Eggs laid by field-mated moths showed a fertility of 75.71%, compared with 4.18% from laboratory-reared moths. These data suggest that S. albicosta develop primarily through seven instars and the most vulnerable developmental stage is the prepupa. Laboratory conditions strongly affected fertility success. Information presented here greatly expands our understanding of S. albicosta biology, which can be used to improve the efficiency of laboratory bioassays and management techniques for this critical crop pest.

2005 ◽  
Vol 18 (12) ◽  
pp. 2132-2137 ◽  
Author(s):  
Joseph Hoch ◽  
Paul Markowski

Abstract A climatology of dryline frequency and location is presented based on 30 yr (1973–2002) of April, May, and June surface observations from the Great Plains region of the United States. Drylines having a horizontal specific humidity gradient greater than or equal to 3 × 10−8 m−1 [greater than or equal to 3 g kg−1 (100 km)−1] are found to be present on 32% of the days, with the peak frequency occurring in mid- to late May. The most favored longitude of the generally meridionally oriented drylines is near −101°W at 0000 UTC, although the favored longitude tends to shift westward as the April–June period elapses. There is no robust suggestion of a shift in the annual mean dryline position over the period studied. Relationships between dryline position and wind and relative humidity data at mandatory levels (e.g., 850, 700, and 500 mb) also are investigated. Dryline longitude increases with increasing westerly momentum aloft. Dryline longitude also increases with decreasing relative humidity at 850 mb, primarily at stations in the western Great Plains region, west of the climatologically favored dryline position near −101°. Dryline position is not as closely associated with either 850-mb relative humidity east of the climatologically favored dryline position or relative humidity in the middle troposphere.


Author(s):  
Anthony DeAngelis ◽  
Francina Dominguez ◽  
Ying Fan ◽  
Alan Robock ◽  
M. Deniz Kustu ◽  
...  

Author(s):  
Sarah L. Jackson ◽  
Sahar Derakhshan ◽  
Leah Blackwood ◽  
Logan Lee ◽  
Qian Huang ◽  
...  

This paper examines the spatial and temporal trends in county-level COVID-19 cases and fatalities in the United States during the first year of the pandemic (January 2020–January 2021). Statistical and geospatial analyses highlight greater impacts in the Great Plains, Southwestern and Southern regions based on cases and fatalities per 100,000 population. Significant case and fatality spatial clusters were most prevalent between November 2020 and January 2021. Distinct urban–rural differences in COVID-19 experiences uncovered higher rural cases and fatalities per 100,000 population and fewer government mitigation actions enacted in rural counties. High levels of social vulnerability and the absence of mitigation policies were significantly associated with higher fatalities, while existing community resilience had more influential spatial explanatory power. Using differences in percentage unemployment changes between 2019 and 2020 as a proxy for pre-emergent recovery revealed urban counties were hit harder in the early months of the pandemic, corresponding with imposed government mitigation policies. This longitudinal, place-based study confirms some early urban–rural patterns initially observed in the pandemic, as well as the disparate COVID-19 experiences among socially vulnerable populations. The results are critical in identifying geographic disparities in COVID-19 exposures and outcomes and providing the evidentiary basis for targeting pandemic recovery.


Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 979-984 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State, in order to determine the virulence of the wheat leaf rust population in 2005. Single uredinial isolates (797 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, Lr28, and winter wheat lines with genes Lr41 and Lr42. In the United States in 2005, 72 virulence phenotypes of P. triticina were found. Virulence phenotype TDBGH, selected by virulence to resistance gene Lr24, was the most common phenotype in the United States, and was found throughout the Great Plains region. Virulence phenotype MCDSB with virulence to Lr17a and Lr26 was the second most common phenotype and was found widely in the wheat growing regions of the United States. Virulence phenotype MFPSC, which has virulence to Lr17a, Lr24, and Lr26, was the third most common phenotype, and was found in the Ohio Valley region, the Great Plains, and California. The highly diverse population of P. triticina in the United States will continue to present a challenge for the development of wheat cultivars with effective durable resistance to leaf rust.


Radiocarbon ◽  
1983 ◽  
Vol 25 (2) ◽  
pp. 315-346 ◽  
Author(s):  
D C Thorstenson ◽  
E P Weeks ◽  
Herbert Haas ◽  
D W Fisher

Data on the depth distribution of the major atmospheric gases and the abundance of gaseous 12CO2, 13CO2, and 14CO2 in the subsoil unsaturated zone have been obtained from several sites in the western Great Plains of the United States. Sample profiles range from land surface to depths of 50m. Although each site must be considered on an individual basis, several general statements can be made regarding the profiles. 1) Diffusion of these gaseous molecules through the unsaturated zone is an important transport mechanism. 2) As predicted by diffusion theory, depth profiles of the various isotopic species of CO2 differ substantially from one another, depending on individual sources and sinks such as root respiration and oxidation of organic carbon at depth. 3) In general, post-bomb (> 100% modern) 14C activities are not observed in the deep unsaturated zone, in contrast to diffusion model predictions. 4) In spite of generally decreasing 14C activities with depth, absolute partial pressures of 14CO2 in the subsoil unsaturated zone are 1–2 orders of magnitude higher than the partial pressure of 14CO2 in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document