scholarly journals Calls reveal population structure of blue whales across the southeast Indian Ocean and the southwest Pacific Ocean

2015 ◽  
Vol 96 (6) ◽  
pp. 1184-1193 ◽  
Author(s):  
Naysa E. Balcazar ◽  
Joy S. Tripovich ◽  
Holger Klinck ◽  
Sharon L. Nieukirk ◽  
David K. Mellinger ◽  
...  
Author(s):  
P.B. Andrews ◽  
V.A. Gostin ◽  
M.A. Hampton ◽  
S.V. Margolis ◽  
A.T. Ovenshine

2021 ◽  
Author(s):  
Michael Mayer ◽  
Magdalena Alonso Balmaseda

AbstractThis study investigates the influence of the anomalously warm Indian Ocean state on the unprecedentedly weak Indonesian Throughflow (ITF) and the unexpected evolution of El Niño-Southern Oscillation (ENSO) during 2014–2016. It uses 25-month-long coupled twin forecast experiments with modified Indian Ocean initial conditions sampling observed decadal variations. An unperturbed experiment initialized in Feb 2014 forecasts moderately warm ENSO conditions in year 1 and year 2 and an anomalously weak ITF throughout, which acts to keep tropical Pacific ocean heat content (OHC) anomalously high. Changing only the Indian Ocean to cooler 1997 conditions substantially alters the 2-year forecast of Tropical Pacific conditions. Differences include (i) increased probability of strong El Niño in 2014 and La Niña in 2015, (ii) significantly increased ITF transports and (iii), as a consequence, stronger Pacific ocean heat divergence and thus a reduction of Pacific OHC over the two years. The Indian Ocean’s impact in year 1 is via the atmospheric bridge arising from altered Indian Ocean Dipole conditions. Effects of altered ITF and associated ocean heat divergence (oceanic tunnel) become apparent by year 2, including modified ENSO probabilities and Tropical Pacific OHC. A mirrored twin experiment starting from unperturbed 1997 conditions and several sensitivity experiments corroborate these findings. This work demonstrates the importance of the Indian Ocean’s decadal variations on ENSO and highlights the previously underappreciated role of the oceanic tunnel. Results also indicate that, given the physical links between year-to-year ENSO variations, 2-year-long forecasts can provide additional guidance for interpretation of forecasted year-1 ENSO probabilities.


2010 ◽  
Vol 73 (1) ◽  
pp. 130-135 ◽  
Author(s):  
Francisco Ruiz ◽  
Manuel Abad ◽  
Luís Miguel Cáceres ◽  
Joaquín Rodríguez Vidal ◽  
María Isabel Carretero ◽  
...  

This review analyses the ostracod record in Holocene tsunami deposits, using an overview of the 2004 Indian Ocean tsunami impact on its recent populations and the associated tsunamigenic deposits, together with results from numerous investigations of other Holocene sequences. Different features such as the variability of the local assemblages, population density, species diversity, age population structure (e.g., percentages of adults and juvenile stages) or taphonomical signatures suggest that these microorganisms may be included amongst the most promising tracers of these high-energy events in marshes, lakes, lagoons or shallow marine areas.


2009 ◽  
Vol 66 (1) ◽  
pp. 153-166 ◽  
Author(s):  
Kathryn Maja Cunningham ◽  
Michael Francis Canino ◽  
Ingrid Brigette Spies ◽  
Lorenz Hauser

Genetic population structure of Pacific cod, Gadus macrocephalus , was examined across much of its northeastern Pacific range by screening variation at 11 microsatellite DNA loci. Estimates of FST (0.005 ± 0.002) and RST (0.010 ± 0.003) over all samples suggested that effective dispersal is limited among populations. Genetic divergence was highly correlated with geographic distance in an isolation-by-distance (IBD) pattern along the entire coastal continuum in the northeastern Pacific Ocean (~4000 km; r2 = 0.83), extending from Washington State to the Aleutian Islands, and over smaller geographic distances for three locations in Alaska (~1700 km; r2 = 0.56). Slopes of IBD regressions suggested average dispersal distance between birth and reproduction of less than 30 km. Exceptions to this pattern were found in samples taken from fjord environments in the Georgia Basin (the Strait of Georgia (Canada) and Puget Sound (USA)), where populations were differentiated from coastal cod. Our results showed population structure at spatial scales relevant to fisheries management, both caused by limited dispersal along the coast and by sharp barriers to migration isolating smaller stocks in coastal fjord environments.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 915
Author(s):  
Muhammad Afrisal ◽  
Yukio Iwatsuki ◽  
Andi Iqbal Burhanuddin

Background: The Lethrinidae (emperors) include many important food fish species. Accurate determination of species and stocks is important for fisheries management. The taxonomy of the genus Lethrinus is problematic, for example with regards to the identification of the thumbprint emperor Lethrinus harak. Little research has been done on L. harak diversity in the Pacific and Indian Oceans. This study aimed to evaluate the morphometric and genetic characters of the thumbprint emperor, L. harak (Forsskål, 1775) in the Pacific and Indian Oceans. Methods: This research was conducted in the Marine Biology Laboratory, Faculty of Marine Science and Fisheries, Hasanuddin University, and Division of Fisheries Science, University of Miyazaki. Morphometric character measurements were based on holotype character data, while genetic analysis was performed on cytochrome oxidase subunit I (COI) sequence data. Morphometric data were analysed using principal component analysis (PCA) statistical tests in MINITAB, and genetic data were analysed in MEGA 6. Results: Statistical test results based on morphometric characters revealed groupings largely representative of the Indian and Pacific Oceans. The Seychelles was separated from other Indian Ocean sites and Australian populations were closer to the Pacific than the Indian Ocean group. The genetic distance between the groups was in the low category (0.000 - 0.042). The phylogenetic topology reconstruction accorded well with the morphometric character analysis, with two main L. harak clades representing Indian and Pacific Ocean, and Australia in the Pacific Ocean clade. Conclusions: These results indicate that the morphological character size of L. harak from Makassar and the holotype from Saudi Arabia have changed. Genetic distance and phylogeny reconstruction are closely related to low genetic distance.


Sign in / Sign up

Export Citation Format

Share Document