scholarly journals Population Structure and Genetic Connectivity of Squat Lobsters (Munida Leach, 1820) Associated With Vulnerable Marine Ecosystems in the Southwest Pacific Ocean

2020 ◽  
Vol 6 ◽  
Author(s):  
Ruo-Jin Yan ◽  
Kareen E. Schnabel ◽  
Ashley A. Rowden ◽  
Xiang-Zhao Guo ◽  
Jonathan P. A. Gardner
2021 ◽  
Author(s):  
◽  
Ruo-Jin Yan

<p>Vulnerable marine ecosystems (VMEs) are susceptible to the impact of intense or long-term anthropogenic activities (e.g., bottom trawling). Networks of marine protected areas (MPAs) can help facilitate the conservation and restoration of biodiversity and ecosystem function provided by VMEs. An understanding of the connectivity amongst populations of deep-sea organisms is crucial for informing the management of VMEs, by assessing the effectiveness of existing MPAs and informing the placement of new MPAs. Genetic evaluation of population structure is one of the most commonly used indirect approaches for interpreting connectivity. In contrast to corals or sponges, which are typically habitat-forming organisms as VME-indicator taxa, squat lobsters are often found in close association with VMEs and can be considered to be VME-associated taxa. Nowadays, population genetic studies of deep-sea fauna mainly focus on VME-indicator taxa, whilst relatively few studies have focussed on VME-associated taxa, such as squat lobsters, whose distribution is not exclusively limited to VMEs. In this study, three deep-sea squat lobster species, Munida isos Ahyong & Poore, 2004, Munida endeavourae Ahyong & Poore, 2004 and Munida gracilis Henderson, 1885, were selected based on their association with VMEs (e.g., cold-water coral reefs and seamounts), wide distributional ranges across the southwest Pacific Ocean, and sample availability.  The overall aims of this research are to evaluate patterns of population structure and genetic connectivity of three squat lobster taxa in the southwest Pacific Ocean and consider how the acquired genetic information can contribute to the management and conservation of VMEs in the southwest Pacific Ocean. A general introduction of VMEs, MPAs, connectivity of deep-sea fauna, High-Throughput Sequencing (HTS), study area and study taxa are presented in Chapter 1.  To provide background information for this research, a review was conducted of the molecular-based studies of the systematics, taxonomy and phylogenetics of marine squat lobster taxa (Chapter 2). Recent molecular-based studies have dramatically increased our understanding of squat lobster phylogenetics and systematics, and thereby the taxonomy of this diverse and challenging group, which provide a valuable starting point for evaluating hypotheses concerning speciation, biogeography, adaptation and co-evolution (e.g., squat lobsters and corals). Notably, accurate taxonomy is critical for population genetic studies and consequently supports the conservation efforts of VMEs.  A range of molecular genetic markers, including the mitochondrial COI region, nuclear microsatellites and single nucleotide polymorphisms (SNPs), were utilised to evaluate the genetic connectivity amongst populations of three VME-associated taxa (Munida isos, M. endeavourae and M. gracilis). In addition to this, universal invertebrate primers were used to yield partial COI fragments of 649 bp (DNA barcoding) for the three Munida species to confirm the taxonomic identity and to exclude the possibility of cryptic species. Due to limited genetic information for the three Munida species, novel microsatellite loci were developed for M. isos based on the HiSeq 2500 sequencing platform and used for cross-species amplification in M. endeavourae and M. gracilis (Chapter 3). Additionally, a Genotyping by Sequencing (GBS) protocol and the Universal Network Enabled Analysis Kit (UNEAK) pipeline were employed to develop novel SNPs for M. isos samples from the southwest Pacific Ocean (Chapter 5).  A spatially explicit hierarchical testing framework (Northern-Southern biogeographical provinces, North-Central-South regions, and individual geomorphic features) was employed for the evaluation of connectivity amongst populations of the three deep-sea squat lobster taxa across their distributional range in the southwest Pacific Ocean (Chapter 4). The level of genetic diversity was high as revealed by variation at the COI region, and moderate based on microsatellite markers across the three Munida species. With more than 96% of the variance being attributed to differences within populations in the three Munida species, based on both marker types, no genetic subdivision was detected in M. endeavourae, whilst little genetic differentiation was observed in M. isos and M. gracilis based on microsatellite variation. For M. isos, populations from the Tasmanian slope were potentially genetically different from all other populations and may act as source populations, whereas populations from the Kermadec Ridge may be sink populations. Robust evidence of recent demographic expansions was detected in the three Munida species, based on COI and microsatellite marker types. The estimated time of demographic expansions for the three Munida species was ca. 16.1 kya, 24.4 kya and 21.6 kya for the M. isos, M. endeavourae and M. gracilis, respectively, coinciding with the late Pleistocene. The results are discussed in the context of the distribution of existing MPAs, and contribute new information useful to the management of VMEs within national and international waters in the region.  To further investigate patterns of connectivity in deep-sea squat lobster populations and provide valuable information for the design of management strategies to protect VMEs, newly developed SNPs were utilised (Chapter 5). The results showed that the Tasmanian slope and Macquarie Ridge populations were genetically different from all other populations, both within New Zealand’s exclusive economic zone (EEZ) and the high seas beyond, with little gene flow derived from Tasmanian slope populations to Macquarie Ridge populations. The results are discussed in the context of existing MPAs, and highlight the complexity of the endeavour to maintain population diversity and gene flow across multiple national jurisdictions as well as international waters, all of which employ different spatial protective measures.  The findings of this research are summarised and discussed in relation to the usefulness of genetic studies to provide new and valuable information about the genetic diversity and connectivity of VME-associated species, and to highlight what additional genetic research is needed to assist in the management and conservation of VMEs in the southwest Pacific Ocean (Chapter 6).</p>


2021 ◽  
Author(s):  
◽  
Ruo-Jin Yan

<p>Vulnerable marine ecosystems (VMEs) are susceptible to the impact of intense or long-term anthropogenic activities (e.g., bottom trawling). Networks of marine protected areas (MPAs) can help facilitate the conservation and restoration of biodiversity and ecosystem function provided by VMEs. An understanding of the connectivity amongst populations of deep-sea organisms is crucial for informing the management of VMEs, by assessing the effectiveness of existing MPAs and informing the placement of new MPAs. Genetic evaluation of population structure is one of the most commonly used indirect approaches for interpreting connectivity. In contrast to corals or sponges, which are typically habitat-forming organisms as VME-indicator taxa, squat lobsters are often found in close association with VMEs and can be considered to be VME-associated taxa. Nowadays, population genetic studies of deep-sea fauna mainly focus on VME-indicator taxa, whilst relatively few studies have focussed on VME-associated taxa, such as squat lobsters, whose distribution is not exclusively limited to VMEs. In this study, three deep-sea squat lobster species, Munida isos Ahyong & Poore, 2004, Munida endeavourae Ahyong & Poore, 2004 and Munida gracilis Henderson, 1885, were selected based on their association with VMEs (e.g., cold-water coral reefs and seamounts), wide distributional ranges across the southwest Pacific Ocean, and sample availability.  The overall aims of this research are to evaluate patterns of population structure and genetic connectivity of three squat lobster taxa in the southwest Pacific Ocean and consider how the acquired genetic information can contribute to the management and conservation of VMEs in the southwest Pacific Ocean. A general introduction of VMEs, MPAs, connectivity of deep-sea fauna, High-Throughput Sequencing (HTS), study area and study taxa are presented in Chapter 1.  To provide background information for this research, a review was conducted of the molecular-based studies of the systematics, taxonomy and phylogenetics of marine squat lobster taxa (Chapter 2). Recent molecular-based studies have dramatically increased our understanding of squat lobster phylogenetics and systematics, and thereby the taxonomy of this diverse and challenging group, which provide a valuable starting point for evaluating hypotheses concerning speciation, biogeography, adaptation and co-evolution (e.g., squat lobsters and corals). Notably, accurate taxonomy is critical for population genetic studies and consequently supports the conservation efforts of VMEs.  A range of molecular genetic markers, including the mitochondrial COI region, nuclear microsatellites and single nucleotide polymorphisms (SNPs), were utilised to evaluate the genetic connectivity amongst populations of three VME-associated taxa (Munida isos, M. endeavourae and M. gracilis). In addition to this, universal invertebrate primers were used to yield partial COI fragments of 649 bp (DNA barcoding) for the three Munida species to confirm the taxonomic identity and to exclude the possibility of cryptic species. Due to limited genetic information for the three Munida species, novel microsatellite loci were developed for M. isos based on the HiSeq 2500 sequencing platform and used for cross-species amplification in M. endeavourae and M. gracilis (Chapter 3). Additionally, a Genotyping by Sequencing (GBS) protocol and the Universal Network Enabled Analysis Kit (UNEAK) pipeline were employed to develop novel SNPs for M. isos samples from the southwest Pacific Ocean (Chapter 5).  A spatially explicit hierarchical testing framework (Northern-Southern biogeographical provinces, North-Central-South regions, and individual geomorphic features) was employed for the evaluation of connectivity amongst populations of the three deep-sea squat lobster taxa across their distributional range in the southwest Pacific Ocean (Chapter 4). The level of genetic diversity was high as revealed by variation at the COI region, and moderate based on microsatellite markers across the three Munida species. With more than 96% of the variance being attributed to differences within populations in the three Munida species, based on both marker types, no genetic subdivision was detected in M. endeavourae, whilst little genetic differentiation was observed in M. isos and M. gracilis based on microsatellite variation. For M. isos, populations from the Tasmanian slope were potentially genetically different from all other populations and may act as source populations, whereas populations from the Kermadec Ridge may be sink populations. Robust evidence of recent demographic expansions was detected in the three Munida species, based on COI and microsatellite marker types. The estimated time of demographic expansions for the three Munida species was ca. 16.1 kya, 24.4 kya and 21.6 kya for the M. isos, M. endeavourae and M. gracilis, respectively, coinciding with the late Pleistocene. The results are discussed in the context of the distribution of existing MPAs, and contribute new information useful to the management of VMEs within national and international waters in the region.  To further investigate patterns of connectivity in deep-sea squat lobster populations and provide valuable information for the design of management strategies to protect VMEs, newly developed SNPs were utilised (Chapter 5). The results showed that the Tasmanian slope and Macquarie Ridge populations were genetically different from all other populations, both within New Zealand’s exclusive economic zone (EEZ) and the high seas beyond, with little gene flow derived from Tasmanian slope populations to Macquarie Ridge populations. The results are discussed in the context of existing MPAs, and highlight the complexity of the endeavour to maintain population diversity and gene flow across multiple national jurisdictions as well as international waters, all of which employ different spatial protective measures.  The findings of this research are summarised and discussed in relation to the usefulness of genetic studies to provide new and valuable information about the genetic diversity and connectivity of VME-associated species, and to highlight what additional genetic research is needed to assist in the management and conservation of VMEs in the southwest Pacific Ocean (Chapter 6).</p>


2018 ◽  
Vol 5 (4) ◽  
pp. 171615 ◽  
Author(s):  
Matthew S. Leslie ◽  
Phillip A. Morin

Little is known about global patterns of genetic connectivity in pelagic dolphins, including how circumtropical pelagic dolphins spread globally following the rapid and recent radiation of the subfamily delphininae. In this study, we tested phylogeographic hypotheses for two circumtropical species, the spinner dolphin ( Stenella longirostris ) and the pantropical spotted dolphin ( Stenella attenuata ), using more than 3000 nuclear DNA single nucleotide polymorphisms (SNPs) in each species. Analyses for population structure indicated significant genetic differentiation between almost all subspecies and populations in both species. Bayesian phylogeographic analyses of spinner dolphins showed deep divergence between Indo-Pacific, Atlantic and eastern tropical Pacific Ocean (ETP) lineages. Despite high morphological variation, our results show very close relationships between endemic ETP spinner subspecies in relation to global diversity. The dwarf spinner dolphin is a monophyletic subspecies nested within a major clade of pantropical spinner dolphins from the Indian and western Pacific Ocean populations. Population-level division among the dwarf spinner dolphins was detected—with the northern Australia population being very different from that in Indonesia. In contrast to spinner dolphins, the major boundary for spotted dolphins is between offshore and coastal habitats in the ETP, supporting the current subspecies-level taxonomy. Comparing these species underscores the different scale at which population structure can arise, even in species that are similar in habitat (i.e. pelagic) and distribution.


2015 ◽  
Vol 96 (6) ◽  
pp. 1184-1193 ◽  
Author(s):  
Naysa E. Balcazar ◽  
Joy S. Tripovich ◽  
Holger Klinck ◽  
Sharon L. Nieukirk ◽  
David K. Mellinger ◽  
...  

2009 ◽  
Vol 66 (1) ◽  
pp. 153-166 ◽  
Author(s):  
Kathryn Maja Cunningham ◽  
Michael Francis Canino ◽  
Ingrid Brigette Spies ◽  
Lorenz Hauser

Genetic population structure of Pacific cod, Gadus macrocephalus , was examined across much of its northeastern Pacific range by screening variation at 11 microsatellite DNA loci. Estimates of FST (0.005 ± 0.002) and RST (0.010 ± 0.003) over all samples suggested that effective dispersal is limited among populations. Genetic divergence was highly correlated with geographic distance in an isolation-by-distance (IBD) pattern along the entire coastal continuum in the northeastern Pacific Ocean (~4000 km; r2 = 0.83), extending from Washington State to the Aleutian Islands, and over smaller geographic distances for three locations in Alaska (~1700 km; r2 = 0.56). Slopes of IBD regressions suggested average dispersal distance between birth and reproduction of less than 30 km. Exceptions to this pattern were found in samples taken from fjord environments in the Georgia Basin (the Strait of Georgia (Canada) and Puget Sound (USA)), where populations were differentiated from coastal cod. Our results showed population structure at spatial scales relevant to fisheries management, both caused by limited dispersal along the coast and by sharp barriers to migration isolating smaller stocks in coastal fjord environments.


2016 ◽  
Author(s):  
Wander O Godinho ◽  
Rodrigo Maggioni ◽  
Ana L Lacerda ◽  
Tito M C Lotufo

Sea urchins play important roles in marine ecosystems as key herbivores and some species have wide geographic range. The Atlantic white sea urchin Tripneustes ventricosus is abundant in many rock reefs of the eastern and western Atlantic, and may be found in high densities in Atolls and Archipelagos. Despite the importance of sea urchins in insular ecosystems, there is no study evaluating the genetic structure and the origin of the white sea urchin in isolated ecosystems. Such information is crucial to understand the connectivity and genetic diversity of these populations from the tropical Atlantic provinces. To evaluate the origin of the white sea urchin in Fernando de Noronha Archipelago and the genetic features of this population, we conducted studies on the population structure of the white sea urchin using mitochondrial DNA (COI), in two regions within the Brazilian biogeographic province and compared with other regions in the Atlantic. The white sea urchin from Fernando de Noronha was found to be genetically distinct, with FST ranging from 0.3 to 0.9 from other populations in Atlantic. The sharing of haplotypes between the Brazilian coast and the archipelago suggests that insular species derived from the Brazilian coast, rather than the East Atlantic. Moreover, all other Atlantic populations were genetically isolated, with low genetic diversity being a common characteristic among them (ranging from 0.0011 to 0.0022). The low connectivity found within populations might be related to the presence of soft barriers among the Brazilian biogeographic province. The low nucleotide diversity may also suggest that T. ventricosus may have undergone bottleneck processes at some stage of their evolution. This study has important implications on the geographic distribution, population structure and gene flow of the white sea urchin among the Atlantic regions. Further studies should evaluate the biological and ecological aspects of the species in both insular and continental marine ecosystems.


2007 ◽  
Vol 97 (1-4) ◽  
pp. 171-180 ◽  
Author(s):  
L. M. Leslie ◽  
D. J. Karoly ◽  
M. Leplastrier ◽  
B. W. Buckley

Sign in / Sign up

Export Citation Format

Share Document