Spatial and temporal genetic diversity of the Texas kangaroo rat, Dipodomys elator (Rodentia: Heteromyidae)

2019 ◽  
Vol 100 (4) ◽  
pp. 1169-1181 ◽  
Author(s):  
Russell S Pfau ◽  
Jim R Goetze ◽  
Robert E Martin ◽  
Kenneth G Matocha ◽  
Allan D Nelson

Abstract The Texas kangaroo rat (Dipodomys elator) is listed as a threatened species in Texas because of its scarcity and small geographic range. We assessed patterns of genetic diversity in D. elator that could affect extinction risk or influence management decisions. Specific objectives included: 1) document levels of genetic diversity, 2) document the degree and patterns of genetic divergence among localities, and 3) compare levels of genetic diversity between different time periods at the same locality. Portions of the mitochondrial genome (mtDNA; control region, cytochrome c oxidase subunit I, and cytochrome b) were sequenced and nuclear microsatellites were examined. Low mtDNA diversity was observed, which could be explained by an historical, species-wide genetic bottleneck. In contrast, microsatellites exhibited ample variation, and analyses were conducted using data from 11 loci and four populations (designated Quanah, Iowa Park, Vernon, and Harrold). Allelic diversity and heterozygosity were similar between populations and temporal samples. Estimates of effective population size (Ne) ranged from 5 to 856, depending on method and population, with Iowa Park showing consistently lower values than Quanah. All methods addressing population structure indicated that the Iowa Park population was divergent from the others, with Vernon and Harrold showing a somewhat intermediate relationship but with a closer affiliation with Quanah than Iowa Park, despite their closer proximity to Iowa Park. This pattern did not conform to isolation by distance, thus genetic drift appears to have played a greater role than gene flow in establishing genetic structure. There was much less difference between temporal samples compared to geographic samples, indicating that genetic drift has had only minimal impacts in shifting allelic frequencies over the time periods examined (17–36 years).

Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 741-751 ◽  
Author(s):  
Pierre Berthier ◽  
Mark A Beaumont ◽  
Jean-Marie Cornuet ◽  
Gordon Luikart

AbstractA new genetic estimator of the effective population size (Ne) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based Ne estimator () by using data from simulated populations with known Ne and real populations. The new likelihood-based estimator () showed narrower credible intervals and greater accuracy than () when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., Ne = 20 for five generations), as few as ~10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit <50 using the LB method. In contrast, ~20 loci are required for the same precision when using the classical F-statistic approach. The estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates Ne than does and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.


2020 ◽  
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

AbstractMany freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Leptoxis compacta does not display an isolation by distance pattern, contrasting patterns seen in many riverine taxa. Our findings also indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9789
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

Many freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Our findings indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


2010 ◽  
Vol 90 (3) ◽  
pp. 331-340 ◽  
Author(s):  
M G Melka ◽  
F. Schenkel

Conservation of animal genetic resources entails judicious assessment of genetic diversity as a first step. The objective of this study was to analyze the trend of within-breed genetic diversity and identify major causes of loss of genetic diversity in four swine breeds based on pedigree data. Pedigree files from Duroc (DC), Hampshire (HP), Lacombe (LC) and Landrace (LR) containing 480 191, 114 871, 51 397 and 1 080 144 records, respectively, were analyzed. Pedigree completeness, quality and depth were determined. Several parameters derived from the in-depth pedigree analyses were used to measure trends and current levels of genetic diversity. Pedigree completeness indexes of the four breeds were 90.4, 52.7, 89.6 and 96.1%, respectively. The estimated percentage of genetic diversity lost within each breed over the last three decades was approximately 3, 22, 12 and 2%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in DC, HP, LC and LR was 74.5, 63.6, 72.9 and 60.0%, respectively. The estimated current effective population size for DC, HP, LC and LR was 72, 14, 36 and 125, respectively. Therefore, HP and LC have been found to have lost considerable genetic diversity, demanding priority for conservation. Key words: Genetic drift, effective population size


2020 ◽  
Vol 33 (1) ◽  
pp. 44-59
Author(s):  
Rafael Núñez-Domínguez ◽  
Ricardo E Martínez-Rocha ◽  
Jorge A Hidalgo-Moreno ◽  
Rodolfo Ramírez-Valverde ◽  
José G García-Muñiz

Background: Romosinuano cattle breed in Mexico has endured isolation and it is necessary to characterize it in order to facilitate sustainable genetic management. Objective: To assess the evolution of the structure and genetic diversity of the Romosinuano breed in Mexico, through pedigree analysis. Methods: Pedigree data was obtained from Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). The ENDOG program (4.8 version) was used to analyze two datasets, one that includes upgrading from F1 animals (UP) and the other with only straight-bred cattle (SP). For both datasets, three reference populations were defined: 1998-2003 (RP1), 2004-2009 (RP2), and 2010-2017 (RP3). The pedigree included 3,432 animals in UP and 1,518 in SP. Demographic parameters were: Generation interval (GI), equivalent number of generations (EG), pedigree completeness index (PCI), and gene flow among herds. Genetic parameters were: Inbreeding (F) and average relatedness (AR) coefficients, effective population size (Nec), effective number of founders and ancestors, and number of founder genome equivalents. Results: The GI varied from 6.10 to 6.54 for UP, and from 6.47 to 7.16 yr for SP. The EG of the UP and SP improved >63% from RP1 to RP3. The PCI increased over time. No nucleus or isolated herds were found. For RP3, F and AR reached 2.08 and 5.12% in the UP, and 2.55 and 5.94% in the SP. For RP3, Nec was 57 in the UP and 45 in the SP. Genetic diversity losses were attributed mainly (>66%) to genetic drift, except for RP3 in the SP (44%). Conclusions: A reduction of the genetic diversity has been occurring after the Romosinuano breed association was established in Mexico, and this is mainly due to random loss of genes.Keywords: effective population size; gene flow; genetic diversity; genetic drift; generation interval; inbreeding; pedigree; population structure; probability of gene origin; Romosinuano cattle. Resumen Antecedentes: La raza bovina Romosinuano ha estado prácticamente aislada en México y requiere ser caracterizada para un manejo genético sostenible. Objetivo: Evaluar la evolución de la estructura y diversidad genética de la raza Romosinuano en México, mediante el análisis del pedigrí. Métodos: Los datos genealógicos provinieron de la Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). Los análisis se realizaron con el programa ENDOG (versión 4.8) para dos bases de datos, una que incluyó animales en cruzamiento absorbente (UP) a partir de F1 y la otra con sólo animales puros (SP). Para ambas bases de datos se definieron tres poblaciones de referencia: 1998-2003 (RP1), 2004- 2009 (RP2), y 2010-2017 (RP3). El pedigrí incluyó 3.432 animales en la UP y 1.518 en la SP. Los parámetros demográficos fueron: intervalo generacional (GI), número de generaciones equivalentes (EG), índice de completitud del pedigrí (PCI), y flujo de genes entre hatos. Los parámetros genéticos fueron: coeficientes de consanguinidad (F) y de relación genética aditiva (AR), tamaño efectivo de la población (Nec), número efectivo de fundadores y ancestros, y número equivalente de genomas fundadores. Resultados: El GI varió de 6,10 a 6,54 para la UP, y de 6,47 a 7,16 años para la SP. El EG de la UP y la SP mejoró >63%, de RP1 a RP3. El PCI aumentó a través de los años, pero más para la SP que para la UP. No se encontraron hatos núcleo o aislados. Para RP3, F y AR alcanzaron 2,08 y 5,12% en la UP, y 2,55 y 5,94% en la SP. Para RP3, Nec fue 57 en la UP y 45 en la SP. Más de 66% de las pérdidas en diversidad genética se debieron a deriva genética, excepto para RP3 en la UP (44%). Conclusiones: una reducción de la diversidad genética ha estado ocurriendo después de que se formó la asociación de criadores de ganado Romosinuano en México, y es debida principalmente a pérdidas aleatorias de genes.Palabras clave: consanguinidad; deriva genética; diversidad genética; estructura poblacional; flujo de genes; ganado Romosinuano; intervalo generacional; pedigrí; probabilidad de origen del gen; tamaño efectivo de población. Resumo Antecedentes: A raça bovina Romosinuano tem estado praticamente isolada no México e precisa ser caracterizada para um manejo genético sustentável. Objetivo: Avaliar a evolução da estrutura e diversidade genética da raça Romosinuano no México, através da análise de pedigree. Métodos: Os dados genealógicos vieram da Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). As análises foram feitas com o programa ENDOG (versão 4.8) para duas bases de dados, uma que incluiu animais em cruzamento absorvente (UP) a partir da F1 e a outra base de dados somente com animais puros (SP). Para ambas bases de dados foram definidas três populações de referência: 1998-2003 (RP1), 2004-2009 (RP2) e 2010-2017 (RP3). O pedigree incluiu 3.432 animais na UP e 1.518 na SP. Os parâmetros demográficos foram: intervalo entre gerações (GI), número de gerações equivalentes (EG), índice de completude do pedigree (PCI), e fluxo de genes entre rebanhos. Os parâmetros genéticos foram: coeficiente de consanguinidade (F) e da relação genética aditiva (AR), tamanho efetivo da população (Nec), número efetivo de fundadores e ancestrais, e número equivalente de genomas fundadores. Resultados: O GI variou de 6,10 a 6,54 para a UP, e de 6,47 a 7,16 anos para a SP. EG da UP e a SP melhorou >63%, de RP1 a RP3. O PCI aumentou ao longo dos anos, mas mais para a SP do que para o UP. Não se encontraram rebanhos núcleo ou isolados. Para RP3, F e AR alcançaram 2,08 e 5,12% na UP, e 2,55 e 5,94% na SP. Para RP3, Nec foi 57 na UP e 45 na SP. Mais de 66% das perdas em diversidade genética foram ocasionadas pela deriva genética, exceto para RP3 no UP (44%). Conclusões: Depois que a associação da raça Romosinuano foi estabelecida no México, tem ocorrido uma redução da diversidade genética, principalmente devido a perdas aleatórias de genes.Palavras-chave: consanguinidade; deriva genética; diversidade genética, estrutura populacional; fluxo de genes; intervalo entre gerações; pedigree; probabilidade de origem do gene; Romosinuano; tamanho efetivo da população.


2018 ◽  
Vol 42 (6) ◽  
pp. 623-630
Author(s):  
Cristiane Gouvêa Fajardo ◽  
Daniel Ferreira da Costa ◽  
Kyvia Pontes Teixeira das Chagas ◽  
Fábio de Almeida Vieira

ABSTRACT The continuing fragmentation of forests has been a threat to the maintenance of genetic resources. Genetic diversity is fundamental to the survival of species in natural environments in the long term, as well as being the basis for genetic improvement. The objective of this study was to evaluate the genetic diversity in natural populations of Hancornia speciosa and to contribute to the development of conservation strategies. We sampled 105 individuals of H. speciosa, distributed in seven populations. The ISSR (Inter-Simple Sequence Repeat) markers provided 70 loci, of which 81% were polymorphic. The mean genetic diversity of Nei (h) was 0.19, and the Shannon index (I) was 0.27. The h and I diversity indices ranged respectively from 0.16 to 0.24 in the PAD (Parque das Dunas) population and from 0.21 to 0.29 in MAC (Macaíba) population. Resulting from a Bayesian analysis, the genotypes were divided into four groups (K = 4). The allelic diversity patterns observed indicated the occurrence of the genetic bottleneck in all populations, according to the stepwise mutation model (SMM). The infinite allele model (IAM) revealed an imbalance between mutation and genetic drift only in the PAD population. Genetic conservation strategies for H. speciosa should cover each genetic group that was differentially structured. We recommend in situ conservation and the creation of germplasm banks, especially with the PAD population which demonstrated the lower genetic diversity and decreased effective population size according to the two mutational models.


2010 ◽  
Vol 365 (1543) ◽  
pp. 1127-1138 ◽  
Author(s):  
Paquita E. A. Hoeck ◽  
Jennifer L. Bollmer ◽  
Patricia G. Parker ◽  
Lukas F. Keller

Small and isolated island populations provide ideal systems to study the effects of limited population size, genetic drift and gene flow on genetic diversity. We assessed genetic diversity within and differentiation among 19 mockingbird populations on 15 Galápagos islands, covering all four endemic species, using 16 microsatellite loci. We tested for signs of drift and gene flow, and used historic specimens to assess genetic change over the last century and to estimate effective population sizes. Within-population genetic diversity and effective population sizes varied substantially among island populations and correlated strongly with island size, suggesting that island size serves as a good predictor for effective population size. Genetic differentiation among populations was pronounced and increased with geographical distance. A century of genetic drift did not change genetic diversity on an archipelago-wide scale, but genetic drift led to loss of genetic diversity in small populations, especially in one of the two remaining populations of the endangered Floreana mockingbird. Unlike in other Galápagos bird species such as the Darwin's finches, gene flow among mockingbird populations was low. The clear pattern of genetically distinct populations reflects the effects of genetic drift and suggests that Galápagos mockingbirds are evolving in relative isolation.


AoB Plants ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Amanda R Silva ◽  
Luciana C Resende-Moreira ◽  
Carolina S Carvalho ◽  
Eder C M Lanes ◽  
Mabel P Ortiz-Vera ◽  
...  

Abstract Conserving genetic diversity in rare and narrowly distributed endemic species is essential to maintain their evolutionary potential and minimize extinction risk under future environmental change. In this study we assess neutral and adaptive genetic structure and genetic diversity in Brasilianthus carajensis (Melastomataceae), an endemic herb from Amazonian Savannas. Using RAD sequencing we identified a total of 9365 SNPs in 150 individuals collected across the species’ entire distribution range. Relying on assumption-free genetic clustering methods and environmental association tests we then compared neutral with adaptive genetic structure. We found three neutral and six adaptive genetic clusters, which could be considered management units (MU) and adaptive units (AU), respectively. Pairwise genetic differentiation (FST) ranged between 0.024 and 0.048, and even though effective population sizes were below 100, no significant inbreeding was found in any inferred cluster. Nearly 10 % of all analysed sequences contained loci associated with temperature and precipitation, from which only 25 sequences contained annotated proteins, with some of them being very relevant for physiological processes in plants. Our findings provide a detailed insight into genetic diversity, neutral and adaptive genetic structure in a rare endemic herb, which can help guide conservation and management actions to avoid the loss of unique genetic variation.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 170 ◽  
Author(s):  
Tommaso Righi ◽  
Andrea Splendiani ◽  
Tatiana Fioravanti ◽  
Elia Casoni ◽  
Giorgia Gioacchini ◽  
...  

Intense and prolonged mortality caused by over-exploitation could drive the decay of genetic diversity which may lead to decrease species’ resilience to environmental changes, thus increasing their extinction risk. Swordfish is a high commercial value species, especially in the Mediterranean Sea, where it is affected by high catch levels. Mediterranean swordfish consist of a population genetically and biologically distinct from Atlantic ones and therefore managed as a separate stock. The last Mediterranean swordfish stock assessment reported that in the last forty years Mediterranean swordfish has been overfished and, to date, it is still subject to overfishing. A comparison between an available mitochondrial sequence dataset and a homologous current sample was carried out to investigate temporal genetic variation in the Mediterranean swordfish population over near twenty years. Our study provides the first direct measure of reduced genetic diversity for Mediterranean swordfish during a short period, as measured both in the direct loss of mitochondrial haplotypes and reduction in haplotype diversity. A reduction of the relative females’ effective population size in the recent sample has been also detected. The possible relationship between fishery activities and the loss of genetic diversity in the Mediterranean swordfish population is discussed.


2017 ◽  
Vol 33 (4) ◽  
pp. 285-294 ◽  
Author(s):  
Daniela A. Martínez-Natarén ◽  
Víctor Parra-Tabla ◽  
Miguel A. Munguía-Rosas

Abstract:Forest fragmentation, habitat loss and isolation may have a strong effect on biodiversity in tropical forests. This can include modification of the genetic diversity and structure of plant populations. In this study, we assessed the genetic diversity and structure of the treeManilkara zapotain 15 naturally formed fragments of semi-evergreen tropical forest, as well as in an adjacent continuous forest for comparison. Forest fragments were scattered within a matrix of wetlands and were highly variable in terms of size and degree of isolation. The naturally fragmented populations ofM.zapotahad slightly less allelic diversity (Ar: 3.4) than those of the continuous forest (Ar: 3.6), when corrected for sample size. However, populations in the fragments and continuous forest had very similar heterozygosity levels (HE: 0.59 in both cases). Low levels of genetic differentiation were observed among populations (FST: 0.026) and genetic structure was not consistent with isolation by distance, indicating high levels of gene flow. Genetic diversity was not explained by fragment size or degree of isolation. The relatively high genetic diversity and low inter-population genetic differentiation observed inM. zapotamay be the result of long-distance pollen and seed dispersal, as well as the high proximity among patches.


Sign in / Sign up

Export Citation Format

Share Document