scholarly journals BCL7C suppresses ovarian cancer growth by inactivating mutant p53

Author(s):  
Canhua Huang ◽  
Qian Hao ◽  
Getao Shi ◽  
Xiang Zhou ◽  
Yu Zhang

Abstract B-cell CLL/lymphoma 7 protein family member C (BCL7C) located at chromosome 16p11.2 shares partial sequence homology with the other two family members, BCL7A and BCL7B. Its role in cancer remains completely unknown. Here, we report our finding of its tumor-suppressive role in ovarian cancer. Supporting this is that BCL7C is downregulated in human ovarian carcinomas, and its underexpression is associated with unfavorable prognosis of ovarian cancer as well as some other types of human cancers. Also, ectopic BCL7C restrains cell proliferation and invasion of ovarian cancer cells. Consistently, depletion of BCL7C reduces apoptosis and promotes cell proliferation and invasion of these cancer cells. Mechanistically, BCL7C suppresses mutant p53-mediated gene transcription by binding to mutant p53, while knockdown of BCL7C enhances the expression of mutant p53 target genes in ovarian cancer cells. Primary ovarian carcinomas that sustain low levels of BCL7C often show the elevated expression of mutant p53 target genes. In line with these results, BCL7C abrogates mutant p53-induced cell proliferation and invasion, but had no impact on proliferation and invasion of cancer cells with depleted p53 or harboring wild-type p53. Altogether, our results demonstrate that BCL7C can act as a tumor suppressor to prevent ovarian tumorigenesis and progression by counteracting mutant p53 activity.

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Yajie Chen ◽  
Qian Hao ◽  
Jieqiong Wang ◽  
Jiajia Li ◽  
Canhua Huang ◽  
...  

Abstract Hotspot p53 mutants augment cancer cell proliferation, metastasis and metabolism through their gain-of-function (GOF). Ovarian cancer sustains the highest frequency of TP53 mutations, but the mechanisms underlying regulation of mutant p53s’ GOF in this type of cancer remain incompletely understood. Herein, we identified the E3-ubiquitin ligase TRIM71 as a novel mutant p53-binding protein. Ectopic TRIM71-induced ubiquitination and proteasomal degradation of mutant p53 by binding to its transactivation (TA) domain, and inhibited the expression of a broad spectrum of mutant p53 target genes. Ectopic TRIM71 also restrained, whereas ablation of TRIM71 endorsed, ovarian carcinoma cell growth in vitro and in vivo. Significantly, TRIM71 overexpression is highly associated with favorable prognosis, particularly, in TP53-mutated ovarian carcinomas. Altogether, our findings unveil the anti-tumor function of TRIM71 in ovarian cancer development and prognosis by downregulating mutant p53s.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Meng Tian ◽  
Yingjie Tang ◽  
Ting Huang ◽  
Yang Liu ◽  
Yingzheng Pan

Abstract Background Ovarian cancer is a devastating gynecological malignancy and frequently presents as an advanced carcinoma with disseminated peritoneum metastasis. Acacetin exerts anti-cancerous effects in several carcinomas. Here, we sought to investigate acacetin function in ovarian cancer malignancy triggered by peritoneal mesothelial cells. Methods Peritoneal mesothelial cells were treated with acacetin, and then the conditioned medium was collected to treat ovarian cancer cells. Then, cell proliferation was analyzed by MTT assay. Transwell analysis was conducted to evaluate cell invasion. Protein expression was determined by western blotting. ELISA and qRT-PCR were applied to analyze inflammatory cytokine levels. The underlying mechanism was also explored. Results Acacetin suppressed cell proliferation and invasion, but enhanced cell apoptosis. Furthermore, mesothelial cell-evoked malignant characteristics were inhibited when mesothelial cells were pre-treated with acacetin via restraining cell proliferation and invasion, concomitant with decreases in proliferation-related PCNA, MMP-2 and MMP-9 levels. Simultaneously, acacetin reduced mesothelial cell-induced transcripts and production of pro-inflammatory cytokine IL-6 and IL-8 in ovarian cancer cells. Mechanically, acacetin decreased lysophosphatidic acid (LPA) release from mesothelial cells, and subsequent activation of receptor for advanced glycation end-products (RAGE)-PI3K/AKT signaling in ovarian cancer cells. Notably, exogenous LPA restored the above pathway, and offset the efficacy of acacetin against mesothelial cell-evoked malignancy in ovarian cancer cells, including cell proliferation, invasion and inflammatory cytokine production. Conclusions Acacetin may not only engender direct inhibition of ovarian cancer cell malignancy, but also antagonize mesothelial cell-evoked malignancy by blocking LPA release-activated RAGE-PI3K/AKT signaling. Thus, these findings provide supporting evidence for a promising therapeutic agent against ovarian cancer. Graphical Abstract


2020 ◽  
Vol 395 (2) ◽  
pp. 112212
Author(s):  
Yingwei Li ◽  
Haiyang Guo ◽  
Zixiang Wang ◽  
Hualei Bu ◽  
Shourong Wang ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Sheng-Bing Liu ◽  
Zhong-Fei Shen ◽  
Yan-Jun Guo ◽  
Li-Xian Cao ◽  
Ying Xu

2018 ◽  
Vol 7 (9) ◽  
pp. 4610-4618 ◽  
Author(s):  
Yufei Yang ◽  
Yue Cao ◽  
Lihua Chen ◽  
Fei Liu ◽  
Zihao Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document