scholarly journals POLIII-derived non-coding RNAs acting as scaffolds and decoys

2019 ◽  
Vol 11 (10) ◽  
pp. 880-885 ◽  
Author(s):  
Hendrik Täuber ◽  
Stefan Hüttelmaier ◽  
Marcel Köhn

Abstract A large variety of eukaryotic small structured POLIII-derived non-coding RNAs (ncRNAs) have been described in the past. However, for only few, e.g. 7SL and H1/MRP families, cellular functions are well understood. For the vast majority of these transcripts, cellular functions remain unknown. Recent findings on the role of Y RNAs and other POLIII-derived ncRNAs suggest an evolutionarily conserved function of these ncRNAs in the assembly and function of ribonucleoprotein complexes (RNPs). These RNPs provide cellular `machineries’, which are essential for guiding the fate and function of a variety of RNAs. In this review, we summarize current knowledge on the role of POLIII-derived ncRNAs in the assembly and function of RNPs. We propose that these ncRNAs serve as scaffolding factors that `chaperone’ RNA-binding proteins (RBPs) to form functional RNPs. In addition or associated with this role, some small ncRNAs act as molecular decoys impairing the RBP-guided control of RNA fate by competing with other RNA substrates. This suggests that POLIII-derived ncRNAs serve essential and conserved roles in the assembly of larger RNPs and thus the control of gene expression by indirectly guiding the fate of mRNAs and lncRNAs.

2020 ◽  
Vol 6 (3) ◽  
pp. 40
Author(s):  
Paola Briata ◽  
Roberto Gherzi

Although mammals possess roughly the same number of protein-coding genes as worms, it is evident that the non-coding transcriptome content has become far broader and more sophisticated during evolution. Indeed, the vital regulatory importance of both short and long non-coding RNAs (lncRNAs) has been demonstrated during the last two decades. RNA binding proteins (RBPs) represent approximately 7.5% of all proteins and regulate the fate and function of a huge number of transcripts thus contributing to ensure cellular homeostasis. Transcriptomic and proteomic studies revealed that RBP-based complexes often include lncRNAs. This review will describe examples of how lncRNA-RBP networks can virtually control all the post-transcriptional events in the cell.


2014 ◽  
Vol 462 (2) ◽  
pp. 215-230 ◽  
Author(s):  
Katell Bidet ◽  
Mariano A. Garcia-Blanco

Flaviviruses are a genus of (+)ssRNA (positive ssRNA) enveloped viruses that replicate in the cytoplasm of cells of diverse species from arthropods to mammals. Many are important human pathogens such as DENV-1–4 (dengue virus types 1–4), WNV (West Nile virus), YFV (yellow fever virus), JEV (Japanese encephalitis virus) and TBEV (tick-borne encephalitis). Given their RNA genomes it is not surprising that flaviviral life cycles revolve around critical RNA transactions. It is these we highlight in the present article. First, we summarize the mechanisms governing flaviviral replication and the central role of conserved RNA elements and viral protein–RNA interactions in RNA synthesis, translation and packaging. Secondly, we focus on how host RNA-binding proteins both benefit and inhibit flaviviral replication at different stages of their life cycle in mammalian hosts. Thirdly, we cover recent studies on viral non-coding RNAs produced in flavivirus-infected cells and how these RNAs affect various aspects of cellular RNA metabolism. Together, the article puts into perspective the central role of flaviviral RNAs in modulating both viral and cellular functions.


2018 ◽  
Vol 4 (4) ◽  
pp. 41 ◽  
Author(s):  
Wilson K. M. Wong ◽  
Anja E. Sørensen ◽  
Mugdha V. Joglekar ◽  
Anand A. Hardikar ◽  
Louise T. Dalgaard

In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and β-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and β-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and β-cell differentiation as well as in the perinatal period, where a burst of β-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and β-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or β-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with β-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and β-cell function. Altogether, these observations support significant and important actions of ncRNAs in β-cell development and function.


2020 ◽  
Vol 21 (3) ◽  
pp. 1151 ◽  
Author(s):  
Shannon E. Dougherty ◽  
Austin O. Maduka ◽  
Toshifumi Inada ◽  
Gustavo M. Silva

The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.


2013 ◽  
Vol 394 (8) ◽  
pp. 1077-1090 ◽  
Author(s):  
Kristin Wächter ◽  
Marcel Köhn ◽  
Nadine Stöhr ◽  
Stefan Hüttelmaier

Abstract The IGF2 mRNA-binding protein family (IGF2BPs) directs the cytoplasmic fate of various target mRNAs and controls essential cellular functions. The three IGF2BP paralogues expressed in mammals comprise two RNA-recognition motifs (RRM) as well as four KH domains. How these domains direct IGF2BP paralogue-dependent protein function remains largely elusive. In this study, we analyze the role of KH domains in IGF2BPs by the mutational GXXG-GEEG conversion of single KH domain loops in the context of full-length polypeptides. These analyses reveal that all four KH domains of IGF2BP1 and IGF2BP2 are essentially involved in RNA-binding in vitro and the cellular association with RNA-binding proteins (RBPs). Moreover the KH domains prevent the nuclear accumulation of these two paralogues and facilitate their recruitment to stress granules. The role of KH domains appears less pronounced in IGF2BP3, because GxxG-GEEG conversion in all four KH domains only modestly affects RNA-binding, subcellular localization and RNA-dependent protein association of this paralogue. These findings indicate paralogue-dependent RNA-binding properties of IGF2BPs which likely direct distinct cellular functions. Our findings suggest that IGF2BPs contact target RNAs via all four KH domains. This implies significant structural constraints, which presumably allow the formation of exceedingly stable protein-RNA complexes.


2021 ◽  
Vol 22 (17) ◽  
pp. 9428
Author(s):  
Dobrochna Dolicka ◽  
Michelangelo Foti ◽  
Cyril Sobolewski

Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.


2021 ◽  
Vol 55 (S3) ◽  
pp. 65-86

The family of two-pore domain potassium (K2P) channels is critically involved in central cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are widely expressed in different human cell types and organs. It is therefore not surprising that aberrant expression and function of K2P channels are related to a spectrum of human diseases, including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite homologies in structure, expression, and stimulus, the functional diversity of K2P channels leads to heterogeneous influences on human diseases. The role of individual K2P channels in different disorders depends on expression patterns and modulation in cellular functions. However, an imbalance of potassium homeostasis and action potentials contributes to most disease pathologies. In this review, we provide an overview of current knowledge on the role of K2P channels in human diseases. We look at altered channel expression and function, the potential underlying molecular mechanisms, and prospective research directions in the field of K2P channels.


2020 ◽  
Vol 48 (5) ◽  
pp. 1967-1978
Author(s):  
Jitendra Thakur ◽  
Steven Henikoff

RNA plays a well-established architectural role in the formation of membraneless interchromatin nuclear bodies. However, a less well-known role of RNA is in organizing chromatin, whereby specific RNAs have been found to recruit chromatin modifier proteins. Whether or not RNA can act as an architectural molecule for chromatin remains unclear, partly because dissecting the architectural role of RNA from its regulatory role remains challenging. Studies that have addressed RNA's architectural role in chromatin organization rely on in situ RNA depletion using Ribonuclease A (RNase A) and suggest that RNA plays a major direct architectural role in chromatin organization. In this review, we will discuss these findings, candidate chromatin architectural long non-coding RNAs and possible mechanisms by which RNA, along with RNA binding proteins might be mediating chromatin organization.


2017 ◽  
Vol 45 (6) ◽  
pp. 1305-1311 ◽  
Author(s):  
Glen R. Gronland ◽  
Andres Ramos

RNA regulation provides a finely tuned and highly co-ordinated control of gene expression. Regulation is mediated by hundreds to thousands of multi-functional RNA-binding proteins which often interact with large sets of RNAs. In this brief review, we focus on a recent work that highlights how the proteins use multiple RNA-binding domains to interact selectively with the different RNA targets. Deconvoluting the molecular complexity of the RNA regulatory network is essential to understanding cell differentiation and function, and requires accurate models for protein–RNA recognition and protein target selectivity. We discuss that the structural and molecular understanding of the key determinant of recognition, together with the availability of methods to examine protein–RNA interactions at the transcriptome level, may provide an avenue to establish these models.


Sign in / Sign up

Export Citation Format

Share Document