scholarly journals Detection of Trypansoma cruzi in Kissing Bugs (Hemiptera: Reduviidae: Triatominae) Collected Across Oklahoma

Author(s):  
Kelly E Allen ◽  
Megan W Lineberry

Abstract Trypanosoma cruzi is the causative agent of Chagas disease in humans and dogs in the Americas. Transmission predominantly occurs via the feces of infected kissing bugs (Hemiptera: family Reduviidae; subfamily Triatominae) contaminating bite site wounds or mucous membranes. To better understand Chagas disease entomologic risk in Oklahoma, kissing bugs collected from within the state were tested for T. cruzi DNA. Data including county of insect collection, species and instar, and specific locations where specimens were found were collated. Triatomines were also tested by PCR to potentially identify DNA of vertebrate species on which specimens had recently fed. In total, 110 kissing bugs from 22 counties were tested. All triatomines were identified as Triatoma sanguisuga nymphs or adults, with the exception of one possible T. lecticularia adult. Trypanosoma cruzi DNA was detected in 22 (20%) triatomines from 12 counties spanning the state. The majority of T. cruzi PCR positive kissing bugs were found inside homes or associated structures (i.e., garages, porches). Vertebrate DNA was identified in 27 (24.5%) triatomines, with human DNA detected in 25 (92.6%) of these specimens, and canine and raccoon DNA detected in one specimen each (3.7%). Two specimens tested positive for both T. cruzi and human DNA and one specimen tested positive for both T. cruzi and raccoon DNA. Results from this study indicate that kissing bugs carrying T. cruzi are widespread in Oklahoma, that positive kissing bugs infest homes and associated structures, and that human-vector, canine-vector, and wildlife-vector contact all occur within the state.

Author(s):  
Cláudia M. Melo ◽  
Ana Carla F. G. Cruz ◽  
Antônio Fernando V. A. Lima ◽  
Luan R. Silva ◽  
Rubens R. Madi ◽  
...  

Updated information of the dispersion dynamics of Chagas disease (CD) and a systemic analysis of these data will aid the early identification of areas that are vulnerable to transmission and enable efficient intervention. This work synthesized spatiotemporal information regarding triatomine fauna and analyzed this information in combination with the results from serological tests to elucidate the epidemiological panorama of CD in the state of Sergipe, Brazil. This is a retrospective analytical study that utilized information from the database of the National Chagas Disease Control Program. Between 2010 and 2016, 838 triatomines of eight species, namely, Panstrongylus geniculatus, which was first recorded in the state of Sergipe, Panstrongylus lutzi, P. megistus, Triatoma brasiliensis, T. pseudomaculata, T. tibiamaculata, T. melanocephala, and Rhodnius neglectus, were collected. Optical microscopy revealed that 13.2% of triatomines examined were infected by Trypanosoma cruzi-like flagellates. The distribution of triatomines exhibits an expanding south-central to northern dispersion, with a preference for semiarid and agreste areas and occasional observations in humid coastal areas due to anthropogenic actions reflected in the environment. Of the human cases analyzed from 2012 to 2016, 8.3% (191/2316) presented positive serology for Trypanosoma cruzi, and this proportion showed a gradual increase in the southern center of the state and new notifications in coastal regions. There is a need for intensification and continuity of the measures adopted by the Chagas Disease Control Program in Sergipe, identifying new priority areas for intervention and preferential ecotopes of the vectors, considering the occurrence of positive triatomines intradomicilliary and a source of new triatomines in the peridomiciles.


2019 ◽  
Author(s):  
Alexander S.F. Berry ◽  
Renzo Salazar-Sánchez ◽  
Ricardo Castillo-Neyra ◽  
Katty Borrini-Mayorí ◽  
Claudia Arevalo-Nieto ◽  
...  

AbstractAnthropogenic environmental alterations such as urbanization can threaten native populations as well as create novel environments that allow human pests and pathogens to thrive. As the number and size of urban environments increase globally, it is more important than ever to understand the dispersal dynamics of hosts, vectors and pathogens of zoonotic disease systems. For example, a protozoan parasite and the causative agent of Chagas disease in humans, Trypanosoma cruzi, recently colonized and spread through the city of Arequipa, Peru. We used population genomic and phylogenomic tools to analyze whole genomes of 123 T. cruzi isolates collected throughout Arequipa to determine patterns of T. cruzi dispersal. The data show significant population genetic structure within city blocks-parasites in the same block tend to be very closely related - but no population structure among blocks within districts - parasites in neighboring blocks are no more closely related to one another than to parasites in distant districts. These data suggest that T. cruzi dispersal within a block occurs regularly and that occasional long-range dispersal events allow the establishment of new T. cruzi populations in distant blocks. Movement of domestic animals may be the primary mechanism of inter-block and inter-district T. cruzi dispersal.Author SummaryUrbanization creates environments that are ideal for some human pests and pathogens. As the number and size of urban environments increases globally, it is becoming vital to understand how human disease-causing pathogens, their vectors, and their non-human hosts disperse through urban landscapes. Here we study a population of Trypanosoma cruzi – the protozoan parasite and causative agent of Chagas disease in humans – that recently colonized the city of Arequipa, Peru. We use population genomic and phylogenomic tools to understand how this parasite population dispersed through the city to achieve its current distribution and abundance. We show that T. cruzi collected from the same city block tend to be very closely related, while those from neighboring blocks are often as distantly related as those from blocks in distant districts. The data suggest that vectors facilitate frequent within-block dispersal of the parasite, while domestic animal movement may facilitate the relatively infrequent inter-block and interdistrict dispersal.


2020 ◽  
Vol 63 (6) ◽  
pp. 3066-3089
Author(s):  
Justin R. Harrison ◽  
Sandipan Sarkar ◽  
Shahienaz Hampton ◽  
Jennifer Riley ◽  
Laste Stojanovski ◽  
...  

Metallomics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 813-828
Author(s):  
M. Florencia Mosquillo ◽  
Pablo Smircich ◽  
Martín Ciganda ◽  
Analía Lima ◽  
Dinorah Gambino ◽  
...  

An in-depth, comparative look at the effects of two structurally related organometallic Pd and Pt compounds on the global gene expression pattern of T. cruzi epimastigotes. This parasite is the causative agent of Chagas disease.


2004 ◽  
Vol 34 (8) ◽  
pp. 881-886 ◽  
Author(s):  
Adriana Parodi-Talice ◽  
Rosario Durán ◽  
Nicolás Arrambide ◽  
Victoria Prieto ◽  
Marı́a Dolores Piñeyro ◽  
...  

Author(s):  
Marta Lima ◽  
Lindsay B Tulloch ◽  
Victoriano Corpas-Lopez ◽  
Sandra Carvalho ◽  
Richard J. Wall ◽  
...  

Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi , the causative agent of Chagas’ disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between β4 and β5 subunits that catalyse chymotrypsin-like activity. A mutation in the β5 subunit of the proteasome was associated with resistance to compound 1 , while overexpression of this mutated subunit also reduced susceptibility to compound 1 . Further genetically engineered and in vitro selected clones resistant to proteasome inhibitors known to bind at the β4/β5 interface were cross-resistant to compound 1 . Ubiquitinylated proteins were additionally found to accumulate in compound 1 -treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1 , although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.


Author(s):  
Nicolás Eric Ponce ◽  
Eugenio Antonio Carrera-Silva ◽  
Andrea Vanina Pellegrini ◽  
Silvia Inés Cazorla ◽  
Emilio Luis Malchiodi ◽  
...  

2003 ◽  
Vol 47 (6) ◽  
pp. 2047-2050 ◽  
Author(s):  
Julio A. Urbina ◽  
Juan Luis Concepcion ◽  
Andrea Montalvetti ◽  
Juan B. Rodriguez ◽  
Roberto Docampo

ABSTRACT We investigated the molecular basis of the activity of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the etiological agent of Chagas’ disease. We found that growth inhibition of T. cruzi epimastigotes induced by this compound was associated with a reduction in the content of the parasite's endogenous sterols due to a specific blockade of their de novo synthesis at the level of squalene synthase.


2021 ◽  
Author(s):  
Angel M. Padilla ◽  
Phil Y. Yao ◽  
Tre J. Landry ◽  
Gretchen M. Cooley ◽  
Susan M. Mahaney ◽  
...  

AbstractTrypanosoma cruzi, the causative agent of human Chagas disease, is endemic to the southern region of the United States where it routinely infects many host species. The indoor/outdoor housing configuration used in many non-human primate research and breeding facilities in the southern U.S. provides the opportunity for infection by T. cruzi and thus provides source material for in-depth investigation of host and parasite dynamics in a natural host species under highly controlled and restricted conditions. For cynomolgus macaques housed at such a facility, we used a combination of serial blood quantitative PCR (qPCR) and hemoculture to confirm infection in >92% of seropositive animals, although each method alone failed to detect infection in >20% of cases. Parasite isolates obtained from 43 of the 64 seropositive macaques were of 2 broad genetic types (discrete typing units, (DTU’s) I and IV); both within and between these DTU groupings, isolates displayed a wide variation in growth characteristics and virulence, elicited host immune responses, and susceptibility to drug treatment in a mouse model. Likewise, the macaques displayed a diversity in T cell and antibody response profiles that rarely correlated with parasite DTU type, length of infection, or age of the primate. This study reveals the complexity of infection dynamics, parasite phenotypes, and immune response patterns that can occur in a primate group, despite being housed in a uniform environment at a single location, and the limited time period over which the T. cruzi infections were established.Author SummaryWe evaluated naturally occurring infections of Trypanosoma cruzi, the causative agent of human Chagas disease, in an indoor/outdoor primate colony at a breeding facility in Texas, USA. Using serial quantitative PCR and hemoculture, we confirmed infection in 92% of the 64 seropositive animals, but neither of these two methods confirmed more than 80% of the cases. Parasites by hemoculture fell into two genetic groups (discrete typing units I and IV), and displayed large variation in growth characteristics, elicited cellular and humoral immune responses as well as virulence and drug susceptibility when tested in mice. EKG abnormalities were found in 13 out of 51 qPCR-positive macaques. Our results demonstrate the complexity of these infection parameters in this colony in spite of the uniform and geographically constrained housing conditions of the macaques.


Sign in / Sign up

Export Citation Format

Share Document