scholarly journals Identification of a proteasome-targeting arylsulfonamide with potential for the treatment of Chagas’ disease

Author(s):  
Marta Lima ◽  
Lindsay B Tulloch ◽  
Victoriano Corpas-Lopez ◽  
Sandra Carvalho ◽  
Richard J. Wall ◽  
...  

Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi , the causative agent of Chagas’ disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between β4 and β5 subunits that catalyse chymotrypsin-like activity. A mutation in the β5 subunit of the proteasome was associated with resistance to compound 1 , while overexpression of this mutated subunit also reduced susceptibility to compound 1 . Further genetically engineered and in vitro selected clones resistant to proteasome inhibitors known to bind at the β4/β5 interface were cross-resistant to compound 1 . Ubiquitinylated proteins were additionally found to accumulate in compound 1 -treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1 , although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.

2018 ◽  
Vol 12 (7) ◽  
pp. e0006612 ◽  
Author(s):  
Lorna M. MacLean ◽  
John Thomas ◽  
Michael D. Lewis ◽  
Ignacio Cotillo ◽  
David W. Gray ◽  
...  

2003 ◽  
Vol 21 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Julio A Urbina ◽  
Gilberto Payares ◽  
Cristina Sanoja ◽  
Renee Lira ◽  
Alvaro J Romanha

2019 ◽  
Vol 26 (36) ◽  
pp. 6544-6563
Author(s):  
Victoria Lucia Alonso ◽  
Luis Emilio Tavernelli ◽  
Alejandro Pezza ◽  
Pamela Cribb ◽  
Carla Ritagliati ◽  
...  

Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery because the miss-regulation of human bromodomains was discovered to be involved in the development of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain- containing proteins in protozoa, offering a new opportunity for the development of antiparasitic drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains were classified in eight groups based on sequence similarity but parasitic bromodomains are very divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize the myriad of small-molecules under study to treat different pathologies and which of them have been tested in trypanosomatids and other protozoa. All the information available led us to propose that T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules to inhibit them should be empowered.


2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


2020 ◽  
Vol 7 ◽  
Author(s):  
Katarzyna I. Jankowska ◽  
Rana Nagarkatti ◽  
Nirmallya Acharyya ◽  
Neetu Dahiya ◽  
Caitlin F. Stewart ◽  
...  

The introduction of pathogen reduction technologies (PRTs) to inactivate bacteria, viruses and parasites in donated blood components stored for transfusion adds to the existing arsenal toward reducing the risk of transfusion-transmitted infectious diseases (TTIDs). We have previously demonstrated that 405 nm violet-blue light effectively reduces blood-borne bacteria in stored human plasma and platelet concentrates. In this report, we investigated the microbicidal effect of 405 nm light on one important bloodborne parasite Trypanosoma cruzi that causes Chagas disease in humans. Our results demonstrated that a light irradiance at 15 mWcm−2 for 5 h, equivalent to 270 Jcm−2, effectively inactivated T. cruzi by over 9.0 Log10, in plasma and platelets that were evaluated by a MK2 cell infectivity assay. Giemsa stained T. cruzi infected MK2 cells showed that the light-treated parasites in plasma and platelets were deficient in infecting MK2 cells and did not differentiate further into intracellular amastigotes unlike the untreated parasites. The light-treated and untreated parasite samples were then evaluated for any residual infectivity by injecting the treated parasites into Swiss Webster mice, which did not develop infection even after the animals were immunosuppressed, further demonstrating that the light treatment was completely effective for inactivation of the parasite; the light-treated platelets had similar in vitro metabolic and biochemical indices to that of untreated platelets. Overall, these results provide a proof of concept toward developing 405 nm light treatment as a pathogen reduction technology (PRT) to enhance the safety of stored human plasma and platelet concentrates from bloodborne T. cruzi, which causes Chagas disease.


2010 ◽  
Vol 54 (9) ◽  
pp. 3738-3745 ◽  
Author(s):  
Sharon King-Keller ◽  
Minyong Li ◽  
Alyssa Smith ◽  
Shilong Zheng ◽  
Gurpreet Kaur ◽  
...  

ABSTRACT Trypanosoma cruzi phosphodiesterase (PDE) C (TcrPDEC), a novel and rather unusual PDE in which, unlike all other class I PDEs, the catalytic domain is localized in the middle of the polypeptide chain, is able to hydrolyze cyclic GMP (cGMP), although it prefers cyclic AMP (cAMP), and has a FYVE-type domain in its N-terminal region (S. Kunz et al., FEBS J. 272:6412-6422, 2005). TcrPDEC shows homology to the mammalian PDE4 family members. PDE4 inhibitors are currently under development for the treatment of inflammatory diseases, such as asthma, chronic pulmonary diseases, and psoriasis, and for treating depression and serving as cognitive enhancers. We therefore tested a number of compounds originally synthesized as potential PDE4 inhibitors on T. cruzi amastigote growth, and we obtained several useful hits. We then conducted homology modeling of T. cruzi PDEC and identified other compounds as potential inhibitors through virtual screening. Testing of these compounds against amastigote growth and recombinant TcrPDEC activity resulted in several potent inhibitors. The most-potent inhibitors were found to increase the cellular concentration of cAMP. Preincubation of cells in the presence of one of these compounds stimulated volume recovery after hyposmotic stress, in agreement with their TcrPDEC inhibitory activity in vitro, providing chemical validation of this target. The compounds found could be useful tools in the study of osmoregulation in T. cruzi. In addition, their further optimization could result in the development of new drugs against Chagas' disease and other trypanosomiases.


2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


2010 ◽  
Vol 105 (7) ◽  
pp. 945-948 ◽  
Author(s):  
Danilo Ciccone Miguel ◽  
Marcela Lencine Ferraz ◽  
Rosana de Oliveira Alves ◽  
Jenicer KU Yokoyama-Yasunaka ◽  
Ana Claudia Torrecilhas ◽  
...  

2004 ◽  
Vol 48 (7) ◽  
pp. 2379-2387 ◽  
Author(s):  
Julio A. Urbina ◽  
Juan Luis Concepcion ◽  
Aura Caldera ◽  
Gilberto Payares ◽  
Cristina Sanoja ◽  
...  

ABSTRACT Chagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans. These compounds were found to be potent noncompetitive or mixed-type inhibitors of T. cruzi SQS with K i values in the low nanomolar to subnanomolar range in the absence or presence of 20 μM inorganic pyrophosphate. The antiproliferative 50% inhibitory concentrations of the compounds against extracellular epimastigotes and intracellular amastigotes were ca. 10 nM and 0.4 to 1.6 nM, respectively, with no effects on host cells. When treated with these compounds at the MIC, all of the parasite's sterols disappeared from the parasite cells. In vivo studies indicated that E5700 was able to provide full protection against death and completely arrested the development of parasitemia when given at a concentration of 50 mg/kg of body weight/day for 30 days, while ER-119884 provided only partial protection. This is the first report of an orally active SQS inhibitor that is capable of providing complete protection against fulminant, acute Chagas' disease.


2019 ◽  
Author(s):  
Lucia Fargnoli ◽  
Esteban A. Panozzo-Zénere ◽  
Lucas Pagura ◽  
María Julia Barisón ◽  
Julia A. Cricco ◽  
...  

L-Proline is an important amino acid for the pathogenic protists belonging to <i>Trypanosoma</i> and <i>Leishmania </i>genera. In <i>Trypanosoma cruzi</i>, the etiological agent of Chagas disease, this amino acid is involved in fundamental biological processes such as ATP production, differentiation of the insect and intracellular stages, the host cell infection and the resistance to a variety of stresses, including nutritional and osmotic as well as oxidative imbalance. In this study, we explore the L-Proline uptake as a chemotherapeutic target for <i>T. cruzi</i>. For this, we propose a novel rational to design inhibitors containing this amino acid as a recognizable motif. This rational consists of conjugating the amino acid (proline in this case) to a linker and a variable region able to block the transporter. We obtained a series of sixteen 1,2,3-triazolyl-proline derivatives through alkylation and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry) for <i>in vitro</i> screening against <i>T. cruzi </i>epimastigotes, trypanocidal activity and proline uptake. We successfully obtained inhibitors that are able to interfere with the amino acid uptake, which validated the first example of a rationally designed chemotherapeutic agent targeting a metabolite's transport. Additionally, we designed and prepared fluorescent analogues of the inhibitors that were successfully taken up by <i>T. cruzi</i>, allowing following up their intracellular fate. In conclusion, we successfully designed and produced a series of metabolite uptake inhibitors. This is one of few examples of rationally designed amino acid transporter inhibitor, being the first case where the strategy is applied on the development of chemotherapy against Chagas disease. This unprecedented development is remarkable having in mind that only a small percent of the metabolite transporters has been studied at the structural and/or molecular level.


Sign in / Sign up

Export Citation Format

Share Document