Scanning Electron Microscopy of Sand Flies of the Chagasi Series, Psychodopygus (Diptera: Psychodidae) Genus, Focusing on the Genitalia

2019 ◽  
Vol 57 (1) ◽  
pp. 92-103
Author(s):  
Rodrigo Espíndola Godoy ◽  
Elizabeth Ferreira Rangel ◽  
Jacenir Reis Dos Santos Mallet ◽  
Thiago Vasconcelos Dos Santos ◽  
Iorlando da Rocha Barata ◽  
...  

Abstract Males of cryptic or closely related species present great morphological variation in their genitalia, whereas females, such as those of the Chagasi Series of the Psychodopygus Mangabeira, 1941 genus, are more similar. Therefore, our aim was to study the fine structure of the male genitalia of five species of the Chagasi Series to better understand the variation in their morphology and its influence on the copulatory process. The sand fly species were captured in the following Brazilian states: Psychodopygus chagasi (Costa Lima, 1941) (Rondônia), Psychodopygus complexus (Mangabeira, 1941) (Tocantins), Psychodopygus squamiventris maripaensis (Floch & Abonnenc, 1946) (Amapá), Psychodopygus squamiventris squamiventris (Lutz & Neiva, 1912) (Amazonas), and Psychodopygus wellcomei Fraiha, Shaw & Lainson, 1971 (Pará and Ceará). Insects were stored in ethanol 70% (then dehydrated) and dry after they were sputtered with gold. The samples were observed under a scanning electron microscope. Microtrichiae, two types of trichoid sensilla, coeloconic and chaetic sensillae, were observed on the antenna of all species, with no difference between them. Only on the anepimeron of P. squamiventris squamiventris a modified ‘racket’-like scale was observed. As for the male genitalia, the setae and structures of each species were fully described, such as the small setae on the paramere apex of the P. squamiventris subspecies, and the grooves present in this region and on the paramere lobe of P. complexus and P. wellcomei, which are impossible to observe with optic microscopy. New information is thus provided on the male genitalia, which can contribute to future bionomic studies of these species.

Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
C. W. Kischer

The morphology of the fibroblasts changes markedly as the healing period from burn wounds progresses, through development of the hypertrophic scar, to resolution of the scar by a self-limiting process of maturation or therapeutic resolution. In addition, hypertrophic scars contain an increased cell proliferation largely made up of fibroblasts. This tremendous population of fibroblasts seems congruous with the abundance of collagen and ground substance. The fine structure of these cells should reflect some aspects of the metabolic activity necessary for production of the scar, and might presage the stage of maturation.A comparison of the fine structure of the fibroblasts from normal skin, different scar types, and granulation tissue has been made by transmission (TEM) and scanning electron microscopy (SEM).


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


2000 ◽  
Vol 8 (2) ◽  
pp. 16-17
Author(s):  
Mary Mager

After an inquiry from the Microscopy Listserver, I went back to my 1980 copy of Scanning Electron Microscopy, volume I. Several authors had investigated the structure of thin metal films by depositing the films onto carbon-film-covered TEM grids and imaging the films at high magnification. There were several proposals for new devices that have since become standards for high-resolution coaters, but the Listserver inquiry was for a fine conducting film suitabie for high-resolution SEM from an existing sputter coater.There were several factors studied that influenced the fine structure of the films. The first was the materials sputtered: for a given set of conditions of voltage, current and time, platinum gave the finest film, 60% gold-40% palladium (Au/Pd) the next finest and pure gold the least fine.


1998 ◽  
Vol 4 (S2) ◽  
pp. 1156-1157
Author(s):  
W. J. Kozek ◽  
J. Brown ◽  
W. Meyer-Ilse ◽  
C. Larabell ◽  
M. Moronne

The small size of many parasitic organisms requires the use of election microscopy for adequate elucidation of their structure. While both transmission and scanning electron microscopy can provide complementary results which allow considerable degree of structural correlation, each technique has its inherent limitations. Since previous studies have demonstrated that soft X-ray microscopy could be used to study parasitic protozoa and provide new information, the objective of this study was to determine whether soft X-ray microscopy could also be used to elucidate the morphology of small metazoa to complement the data obtained by other microscopy techniques.Newborn larvae, approximately 7 μm × 110 μm in size, of parasitic nematode Trichinella spiralis were used as a model system. Some of the larvae, deposited by adult females maintained in vitro, were isolated and processed for examination by transmission and scanning electron microscopy as described in our previous studies, others were fixed in 4% glutaraldehyde (Millonig's buffer) and examined in the X-ray microscope XM-1, and in the BioRad MRC 1024 confocal laser (krypton/argon) microscope of the Advanced Light Source, Berkeley National Laboratory.


Author(s):  
Gisella C.S. Chagas ◽  
Renata A.S. Alitto ◽  
Helena Serrano ◽  
Gabriela Granadier ◽  
Pablo D.B. Guilherme ◽  
...  

AbstractThe genera Ophiophragmus and Amphiodia are amphiurids that are considered taxonomically difficult due to their great resemblance, few diagnostic characters and synonymy problems. Our aim is to redescribe the species using scanning electron microscopy and morphometry of diagnostic structures, and to provide new information for the identification of these Ophiuroidea. Five Amphiodia spp. and six Ophiophragmus spp. recorded in Brazil were rigorously redescribed. The descriptions include new diagnostic characters derived from external morphology, arm microstructures and morphometry. We also provided comparative analyses of species with shared characters such as Amphiodia riisei and Amphiodia trychna. The geographic and bathymetric distributions of the studied species were updated, and new records are provided. All the information presented may be used in taxonomic, ecological and phylogenetic studies, helping to fill gaps in the knowledge of the biodiversity, ecology and evolution of these Ophiuroidea. Conclusively, all the tools applied here assisted in the identification of genera and species and could be useful in other taxonomic studies of Echinodermata.


Sign in / Sign up

Export Citation Format

Share Document