In situ scanning electron microscopy observations of filler material transport in branched carbon microtubes by Joule heating

Microscopy ◽  
2020 ◽  
Vol 69 (5) ◽  
pp. 291-297
Author(s):  
Masaki Okada ◽  
Daiya Sasaki ◽  
Hideo Kohno

Abstract Y-branched or side-by-side-branched carbon microtubes with metal filler material were fabricated, and material transport in the branched microtubes with Joule heating was investigated using in situ scanning electron microscopy with micro-electrode probes. When a voltage and electric current were applied, the material enclosed in the microtubes moved from its original position. The movement was not related to the direction of the electric current; therefore, it is concluded that the movement was not due to electromigration, but rather a temperature gradient, volume expansion and increased vapor pressure by Joule heating. In Y-branched microtubes, a part of the metal filler material moved from one branch to another branch, which would be useful for microfluidic flow switching. A cylindrical filler material was also observed to be expelled from a branch while its shape was maintained, and this phenomenon is presumably caused by vaporization-induced high pressure and could find application in micro-mechanical manipulators such as punching needles. In side-by-side-branched carbon microtubes, Joule heating caused thermal volume expansion to fill the spaces in the branches that were initially empty. The microtubes then reverted to a state almost identical to the initial state with empty spaces when the electric current was turned off. These results suggest that thermal volume expansion could be employed for flow switching.

2014 ◽  
Vol 802 ◽  
pp. 491-495
Author(s):  
N. Vicente ◽  
J. Ocanã ◽  
H.N. Bez ◽  
C.S. Teixeira ◽  
Izabel Fernanda Machado ◽  
...  

Spark Plasma Sintering (SPS) of LaFeSi alloy powders was conducted to prepare magnetocaloric La-Fe-Si-based uniform microstructures. Two electrically insulating discs made of alumina were interposed between the punches and powder sample inhibiting the flow of electric current across the powder. This approaching aiming at improving the sample temperature distribution by deviating the electric current throughout the graphite die, since the electric current induces overheating byin situJoule effect on powder. The LaFeSi powder with particles under 150 µm was obtained by mechanical milling of particles from hydrogenated and decrypted casting ingot. The characterizations of sintered samples were performed by Scanning Electron Microscopy (SEM), Archimedes principle, Vicker’s hardness and microhardness. The uniformity of the microstructure was evaluated by checking the evidence of position on the Vicker’s microhardness by means of ANOVA statistics.


2018 ◽  
Author(s):  
Grigore Moldovan ◽  
Wolfgang Joachimi ◽  
Guillaume Boetsch ◽  
Jörg Jatzkowski ◽  
Frank Altman

Abstract This work presents advanced resistance mapping techniques based on Scanning Electron Microscopy (SEM) with nanoprobing systems and the related embedded electronics. Focus is placed on recent advances to reduce noise and increase speed, such as integration of dedicated in situ electronics into the nanoprobing platform, as well as an important transition from current-sensitive to voltagesensitive amplification. We show that it is now possible to record resistance maps with a resistance sensitivity in the 10W range, even when the total resistance of the mapped structures is in the range of 100W. A reference structure is used to illustrate the improved performance, and a lowresistance failure case is presented as an example of analysis made possible by these developments.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 446
Author(s):  
Ioannis Spanos ◽  
Zacharias Vangelatos ◽  
Costas Grigoropoulos ◽  
Maria Farsari

The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale.


2020 ◽  
Vol 176 (1) ◽  
Author(s):  
W. D. Maier ◽  
S.-J. Barnes ◽  
D. Muir ◽  
D. Savard ◽  
Y. Lahaye ◽  
...  

AbstractBushveld anorthosites commonly contain the so-called “mottles” comprising irregular, typically centimetric domains of oikocrystic pyroxene or olivine enclosing small, embayed plagioclase grains. The mottles were traditionally interpreted to result from solidification of trapped intercumulus liquid or via in situ crystallisation at the top of the crystal mush. Here, we present microtextural and compositional data of a mottle to place further constraints on the formation of anorthosite layers. Element maps generated by scanning electron microscopy reveal that plagioclase within and around the mottle has markedly elevated An contents (up to An95) relative to the host anorthosite and is strongly reversely zoned. Other unusual features, some of which were reported previously, include a halo of sub-vertically oriented, acicular phlogopite around the mottle, elevated contents of disseminated sulfides, and relatively evolved yet Ni-rich olivine (Fo71–75, 3000 ppm Ni). These features are interpreted to result from reactive porous flow of hot, acidic fluid enriched in nickel and sulfur through proto norite. The fluids dissolved mafic minerals and leached alkalis from the outer rims of plagioclase grains. Reconnaissance studies suggest that reversed zoning of plagioclase is a common feature in Bushveld norite and anorthosite. This implies that reactive porous flow could have been far more pervasive than currently realised and that Bushveld anorthosite layers formed through recrystallisation of norites.


1991 ◽  
Vol 70 (4) ◽  
pp. 1544-1549 ◽  
Author(s):  
D. Negrini ◽  
S. Mukenge ◽  
M. Del Fabbro ◽  
C. Gonano ◽  
G. Miserocchi

In seven anesthetized rabbits we measured the size, shape, and density of lymphatic stomata on the peritoneal and pleural sides of the diaphragm. The diaphragm was fixed in situ and processed for scanning electron microscopy. Results are from 2,902 peritoneal and 3,086 pleural fields (each 1,620 microns 2) randomly chosen from the various specimens. Stomata were seen in 9% of the fields examined, and in 30% of the cases they appeared grouped in clusters with 2-14 stomata/field. Stoma density was 250 +/- 242 and 72 +/- 57 (SD) stomata/mm2 on peritoneal and pleural sides, respectively, and it was similar over the muscular and tendinous portion of the two surfaces. The maximum diameter ranged from less than 1 to approximately 30 microns, with an average value of 1.2 +/- 3.1 micron. The ratio of the maximum to the minimum diameter and the surface area averaged 2 +/- 1.4 and 0.7 +/- 2.4 micron 2, respectively. The maximum and minimum diameter and surface area values followed a lognormal frequency distribution, suggesting that stomata geometry is affected by diaphragmatic tension.


Sign in / Sign up

Export Citation Format

Share Document