scholarly journals The Rate of Glucose Appearance Is Related to Postprandial Glucose and Insulin Responses in Adults: A Systematic Review and Meta-analysis of Stable Isotope Studies

2019 ◽  
Vol 149 (11) ◽  
pp. 1896-1903 ◽  
Author(s):  
Hanny M Boers ◽  
Marjan Alssema ◽  
David J Mela ◽  
Harry P F Peters ◽  
Roel J Vonk ◽  
...  

Abstract Background It is often assumed that lower postprandial glucose (PPG) and insulin (PPI) responses are induced by slower glucose influx from the gut (e.g., by delayed carbohydrate digestion). However, changes in the rate of appearance of glucose in the peripheral circulation [rate of appearance of exogenous glucose (RaE)] may be accompanied by changes in endogenous glucose production (EGP) and the rate of disappearance of total glucose into tissues (RdT). The quantitative relationships between reductions in RaE and PPG/PPI levels are unclear. Objectives The objective was to perform a meta-analysis to quantify the effect of changes in RaE on changes in PPG and PPI levels (primary) and EGP and RdT (secondary). Methods We systematically searched the Scopus, Medline, and Cochrane library databases through 10 January 2019 for randomized, controlled, carbohydrate-rich interventions that aimed to reduce RaE in humans, measured using dual or triple stable isotope methods. The 2-h net incremental AUCs for all variables were extracted or calculated. Relationships between RaE and outcomes were quantified by weighted regression analyses. Results There were 12 articles, including 17 comparisons, that satisfied the inclusion criteria. The subjects were mainly men (60%), with age and BMI ranges of 18–40 y and 20.0–27.5 kg/m2, respectively. A 10% reduction in RaE was associated with reductions in PPG levels, PPI levels, and the RdT of 7% (95% CI: 2%, 12%; P = 0.010), 8% (95% CI: 2%, 13%; P = 0.012), and 11% (95% CI: 4%, 17%; P = 0.005), respectively, but was not significantly associated with a change in EGP (13%; 95% CI: −7%, 33%; P = 0.176). All fluxes together explained 70% and 26% of the variances in PPG and PPI levels, respectively. Conclusions In adults, reducing glucose RaE by diet is associated with significant reductions in PPG levels, PPI levels, and the rate of glucose disposal. This trial was registered in the PROSPERO database with identifier CRD42018084824.

2001 ◽  
Vol 86 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Sylvie Normand ◽  
Yadh Khalfallah ◽  
Corinne Louche-Pelissier ◽  
Christiane Pachiaudi ◽  
Jean-Michel Antoine ◽  
...  

The present study evaluates the influence of different amounts of fat added to starch on postprandial glucose metabolism (exogenous and endogenous). Nine women (24 (SE 2) YEARS OLD, BMI 20·4 (se 0·7) kg/m2) ingested 1 week apart 75 g glucose equivalent of 13C-labelled starch in the form of pasta without (low fat; LF) or with 15 (medium fat; MF) or 40 (high fat; HF) g sunflower oil. During the 7 h following meal consumption, plasma glucose, non-esterified fatty acids, triacylglycerols (TG) and insulin concentrations, and endogenous (using [6,6-2H2]glucose) and exogenous glucose turnover were determined. With MF and HF meals, a lower postprandial glucose peak was observed, but with a secondary recovery. A decrease in exogenous glucose appearance explained lower glycaemia in HF. At 4 h after the HF meal the insulin, insulin:glucose and postprandial blood TG were higher than those measured after the LF and MF meals. Despite higher insulinaemia, total glucose disappearance was similar and endogenous glucose production was suppressed less than after the LF and MF meals, suggesting insulin resistance. Thus, the addition of a large amount of fat appears to be unfavourable to glucose metabolism because it leads to a feature of insulin resistance. On the contrary, the MF meal did not have these adverse effects, but it was able to decrease the initial glycaemic peak.


1990 ◽  
Vol 64 (2) ◽  
pp. 463-472 ◽  
Author(s):  
B. J. Leury ◽  
K. D. Chandler ◽  
A. R. Bird ◽  
A. W. Bell

Fetal glucose kinetics were measured using a combination of isotope-dilution and Fick-principle methodology in single-pregnant ewes which were either well-fed throughout, or fed at 0.3–0.4 predicted energy requirement for 7–21 d during late pregnancy. All ewes were studied while standing at rest and then while walking on a treadmill at 0.7 m/s on a 10° slope for 60 min. Underfed ewes suffered major decreases in fetal total disposal rate, fetal-placental transfer and umbilical net uptake of glucose, each of which were significantly related to declines in maternal and fetal blood glucose concentrations respectively. In well-fed ewes, fetal endogenous glucose production was negligible, as indicated by the similarity between fetal utilization rate (total glucose disposal rate minus placental uptake of fetal glucose) and umbilical net uptake of glucose, and by nearly identical fetal and maternal arterial blood specific radioactivities of maternally infused D-[2-3H]glucose. By contrast, in underfed ewes, fetal utilization rate greatly exceeded umbilical net uptake of glucose, and the fetal:maternal [3H]glucose specific activity ratio declined significantly, suggesting induction of a substantial rate of fetal endogenous glucogenesis. Exercise caused increases in fetal total glucose disposal rate and glycaemia in fed and underfed ewes. In underfed ewes only, this was accompanied by increased placental uptake of fetal glucose and umbilical net glucose uptake, unchanged fetal glucose utilization and decreased fetal endogenous glucose production. It is concluded that fetal gluconeogenesis makes a major contribution to fetal glucose requirements in undernourished ewes. Increased maternal supply of fetal glucose during exercise substitutes for rather than adds to fetal endogenous glucogenesis.


2020 ◽  
Vol 319 (1) ◽  
pp. E2-E10
Author(s):  
Timothy D. Allerton ◽  
Greg M. Kowalski ◽  
Hardy Hang ◽  
Jacqueline Stephens

To resolve both the systems level and molecular mechanisms responsible for exercise-induced improvements in glucose tolerance, we sought to test the effect of voluntary wheel running exercise on postprandial glucose dynamics. We utilized a stable isotope-labeled oral glucose tolerance test (SI-OGTT) incorporating complementary deuterium glucose tracers at a 1:1 ratio (2-2H-glucose and 6–6 2H-glucose; 2g/kg lean body mass) to distinguish between endogenous glucose production (EGP) and whole-body glucose disposal. SI-OGTT was performed in C57BL/6J mice after 8 wk on a high-fat diet (HFD; 45% fat). Mice were then randomized to either a wheel-running cage ( n = 13, HFD Ex) or a normal cage ( n = 13, HFD Sed) while maintaining the HFD for 4 wk before performing a SI-OGTT. HFD Ex mice demonstrated improvements in whole blood glucose total area under the curve (AUC) that was attributed primarily to a reduction in EGP AUC. Serum insulin levels measured at 0 and 15 min post- glucose gavage were significantly elevated in the HFD Sed mice, whereas HFD Ex mice demonstrated the expected reduction in insulin at both time points. Overall, exercise improved hepatic insulin sensitivity by reducing postprandial EGP, but also increased whole-body glucose disposal. Finally, these results demonstrate the benefits of exercise on hepatic insulin sensitivity by combining a more physiological route of glucose administration (oral glucose) with the resolution of stable isotope tracers. These novel observations clearly demonstrate that SI-OGTT is a sensitive and cost-effective method to measure exercise adaptations in obese mice with as little as 2 µl of tail blood.


2018 ◽  
Vol 314 (5) ◽  
pp. E503-E511 ◽  
Author(s):  
Dale J. Morrison ◽  
Greg M. Kowalski ◽  
Eleonora Grespan ◽  
Andrea Mari ◽  
Clinton R. Bruce ◽  
...  

The effect of endurance exercise on enhancing insulin sensitivity and glucose flux has been well established with techniques such as the hyperinsulinemic clamp. Although informative, such techniques do not emulate the physiological postprandial state, and it remains unclear how exercise improves postprandial glycaemia. Accordingly, combining mixed-meal tolerance testing and the triple-stable isotope glucose tracer approach, glucose fluxes [rates of meal glucose appearance (Ra), disposal (Rd), and endogenous glucose production (EGP)] were determined following acute endurance exercise (1 h cycling; ~70% V̇o2max) and 4 wk of endurance training (cycling 5 days/wk). Training was associated with a modest increase in V̇o2max (~7%, P < 0.001). Postprandial glucose and insulin responses were reduced to the same extent following acute and chronic training. Interestingly, this was not accompanied by changes to rates of meal Ra, Rd, or degree of EGP suppression. Glucose clearance (Rd relative to prevailing glucose) was, however, enhanced with acute and chronic exercise. Furthermore, the duration of EGP suppression was shorter with acute and chronic exercise, with EGP returning toward fasting levels more rapidly than pretraining conditions. These findings suggest that endurance exercise influences the efficiency of the glucoregulatory system, where pretraining rates of glucose disposal and production were achieved at lower glucose and insulin levels. Notably, there was no influence of chronic training over and above that of a single exercise bout, providing further evidence that glucoregulatory benefits of endurance exercise are largely attributed to the residual effects of the last exercise bout.


1991 ◽  
Vol 260 (3) ◽  
pp. E430-E435 ◽  
Author(s):  
I. Raz ◽  
A. Katz ◽  
M. K. Spencer

The effect of epinephrine (E) infusion on insulin-mediated glucose metabolism in humans has been studied. Eight glucose-tolerant men were studied on two separate occasions: 1) during 120 min of euglycemic hyperinsulinemia (UH, approximately 5 mM; 40 mU.m-2.min-1); and 2) during UH while E was infused (UHE, 0.05 microgram.kg-1.min-1). Biopsies were taken from the quadriceps femoris muscle before and after each clamp. Glucose disposal, correcting for endogenous glucose production, was 36 +/- 3 and 18 +/- 2 (SE) mumol.kg fat-free mass (FFM)-1.min-1 during the last 40 min of UH and UHE, respectively (P less than 0.001). Nonoxidative glucose disposal (presumably glycogenesis) averaged 23.0 +/- 3.0 and 4.0 +/- 1.1 (P less than 0.001), whereas carbohydrate oxidation (which is proportional to glycolysis) averaged 13.1 +/- 1.4 and 15.3 +/- 1.1 mumol.kg FFM-1.min-1 (P less than 0.05) during UH and UHE, respectively. UHE resulted in significantly higher contents of UDP-glucose, hexose monophosphates, postphosphofructokinase intermediates, and glucose 1,6-bisphosphate (G-1,6-P2) in muscle (P less than 0.05-0.001), but there were no significant differences in high-energy phosphates or fructose 2,6-bisphosphate (F-2,6-P2) between treatments. Fractional activities of phosphorylase increased (P less than 0.01), and glycogen synthase decreased (P less than 0.001) during UHE. It is concluded that E inhibits insulin-mediated glycogenesis because of an inactivation of glycogen synthase and an activation of glycogenolysis. E also appears to inhibit insulin-mediated glucose utilization, at least partly, because of an increase in G-6-phosphate (which inhibits hexokinase) and enhances glycolysis by G-1,6-P2-, fructose 6-phosphate-, and F-1,6-P2-mediated activation of PFK.


2004 ◽  
Vol 89 (7) ◽  
pp. 3554-3560 ◽  
Author(s):  
Marc van der Valk ◽  
Gideon Allick ◽  
Gerrit Jan Weverling ◽  
Johannes A. Romijn ◽  
Mariette T. Ackermans ◽  
...  

Abstract Treatment for HIV-1 infection is often complicated by a lipodystrophy syndrome associated with insulin resistance and an elevated rate of lipolysis. In eight HIV-1 infected men with lipodystrophy syndrome, we studied the effects of replacement of protease inhibitor (PI) by abacavir on insulin sensitivity and lipolysis by hyperinsulinemic euglycemic clamp and on fat distribution assessed by dual-energy x-ray absorptiometry and computed tomography scan. Glucose metabolism and lipolysis were assessed by tracer dilution employing [6,6-2H2]glucose and [2H5]glycerol, respectively. Data are expressed as mean ± sd or 95% confidence interval (CI), as appropriate. There were no significant changes in fat distribution assessed by dual-energy x-ray absorptiometry and computed tomography scan at wk 36 and wk 96. The fasting total glucose production decreased from 16.1 ± 2.5 at study entry by 1.1 (range, −2.1 to −0.1) to 15.0 ± 1.5 μmol/kg·min after PI withdrawal at wk 36 (n = 8). In an analysis restricted to the patients on treatment at wk 96 (n = 6), the decrease was 0.9 (range, −2.1 to 0.3) μmol/kg·min. During insulin infusion, glucose oxidation (as percent of total glucose disposal) increased from 36.8 ± 12.7% by 11.0% (range, 1.3–20.8) to 47.9 ± 13.9% in the wk 36 analysis. In the analysis restricted to the patients on treatment at wk 96 (n = 6) the increase was 7.7 (−4.0 to 19.4)%. Fasting lipolysis decreased from 2.7 ± 0.6 μmol/kg·min by 0.9 (−1.6 to −0.2) to 1.8 ± 0.3 μmol/kg·min in the wk-96 analysis (n = 6). The replacement of the studied PIs by abacavir in severe lipodystrophic HIV-1-infected patients results in a marked reduction of lipolysis. In contrast, fasting glucose production and insulin-stimulated glucose oxidation improve moderately, whereas insulin-stimulated glucose disposal and fat distribution do not change.


1985 ◽  
Vol 54 (2) ◽  
pp. 449-458 ◽  
Author(s):  
A. N. Janes ◽  
T. E. C. Weekes ◽  
D. G. Armstrong

1. Sheep fitted with re-entrant canulas in the proximal duodenum and terminal ileum were used to determine the amount of α-glucoside entering, and apparently disappearing from, the small intestine when either dried-grass or ground maize-based diets were fed. The fate of any α-glucoside entering the small intestine was studied by comparing the net disappearance of such a-glucoside from the small intestine with the absorption of glucose into the mesenteric venous blood.2. Glucose absorption from the small intestine was measured in sheep equipped with catheters in the mesenteric vein and carotid artery. A continuous infusion of [6-3H]glucose was used to determine glucose utilization by the mesenteric-drained viscera and the whole-body glucose turnover rate (GTR).3. The amounts of α-glucoside entering the small intestine when the dried-grass and maize-based diets were given were 13.9 (SE 1.5) and 95.4 (SE 16.2) g/24 h respectively; apparent digestibilities of such α-glucoside in the small intestine were 60 and 90% respectively.4. The net absorption of glucose into the mesenteric venous blood was —2.03 (SE 1.20) and 19.28 (SE 0.75) mmol/h for the dried-grass and maize-based diets respectively. Similarly, total glucose absorption amounted to 1.52 (SE 1.35) and 23.33 (SE 1.86) mmol/h (equivalent to 7 and 101 g/24 h respectively). These values represented 83 and 11 1% of the a-glucoside apparently disappearing from the small intestine, determined using the re-entrant cannulated sheep.5. Total glucose absorption represented 8 and 61% of the whole-body GTR for the dried-grass and maize-based diets respectively. Endogenous glucose production was significantly lower when the sheep were fed on the maize-based diet compared with the dried-grass diet.6. The mesenteric-drained viscera metabolized a small amount of glucose, equivalent to 234 and 17% of the total glucose absorbed for the dried-grass and maize-based diets respectively.7. It is concluded that a large proportion of the starch entering the small intestine of sheep given a maize-based diet is digested and absorbed as glucose, and thus contributes to the whole-body GTR.


2002 ◽  
Vol 282 (6) ◽  
pp. E1360-E1368 ◽  
Author(s):  
Thongchai Pratipanawatr ◽  
Wilailak Pratipanawatr ◽  
Clifford Rosen ◽  
Rachele Berria ◽  
Mandeep Bajaj ◽  
...  

The effects of insulin-like growth factor I (IGF-I) and insulin on free fatty acid (FFA) and glucose metabolism were compared in eight control and eight type 2 diabetic subjects, who received a two-step euglycemic hyperinsulinemic (0.25 and 0.5 mU · kg−1 · min−1) clamp and a two-step euglycemic IGF-I (26 and 52 pmol · kg−1 · min−1) clamp with [3-3H]glucose, [1-14C]palmitate, and indirect calorimetry. The insulin and IGF-I infusion rates were chosen to augment glucose disposal (Rd) to a similar extent in control subjects. In type 2 diabetic subjects, stimulation of Rd (second clamp step) in response to both insulin and IGF-I was reduced by ∼40–50% compared with control subjects. In control subjects, insulin was more effective than IGF-I in suppressing endogenous glucose production (EGP) during both clamp steps. In type 2 diabetic subjects, insulin-mediated suppression of EGP was impaired, whereas EGP suppression by IGF-I was similar to that of controls. In both control and diabetic subjects, IGF-I-mediated suppression of plasma FFA concentration and inhibition of FFA turnover were markedly impaired compared with insulin ( P < 0.01–0.001). During the second IGF-I clamp step, suppression of plasma FFA concentration and FFA turnover was impaired in diabetic vs. control subjects ( P < 0.05–0.01). Conclusions: 1) IGF-I is less effective than insulin in suppressing EGP and FFA turnover; 2) insulin-resistant type 2 diabetic subjects also exhibit IGF-I resistance in skeletal muscle. However, suppression of EGP by IGF-I is not impaired in diabetic individuals, indicating normal hepatic sensitivity to IGF-I.


2003 ◽  
Vol 285 (2) ◽  
pp. E280-E286 ◽  
Author(s):  
Farhad Zangeneh ◽  
Rita Basu ◽  
Pankaj Shah ◽  
Puneet Arora ◽  
Michael Camilleri ◽  
...  

Portal infusion of glucose at rates approximating endogenous glucose production (EGP) causes paradoxical hypoglycemia in wild-type but not GLUT2 null mice, implying activation of a specific portal glucose sensor. To determine whether this occurs in humans, glucose containing [3-3H]glucose was infused intraduodenally at rates of 3.1 mg · kg-1 · min-1 ( n = 5), 1.55 mg · kg-1 · min-1 ( n = 9), or 0/0.1 mg · kg-1 · min-1 ( n = 9) for 7 h in healthy nondiabetic subjects. [6,6-2H2]glucose was infused intravenously to enable simultaneous measurement of EGP, glucose disappearance, and the rate of appearance of the intraduodenally infused glucose. Plasma glucose concentrations fell ( P < 0.01) from 90 ± 1 to 84 ± 2 mg/dl during the 0/0.1 mg · kg-1 · min-1 id infusions but increased ( P < 0.001) to 104 ± 5 and 107 ± 3 mg/dl, respectively, during the 1.55 and 3.1 mg · kg-1 · min-1 id infusions. In contrast, insulin increased ( P < 0.05) during the 1.55 and 3.0 mg · kg-1 · min-1 infusions, reaching a peak of 10 ± 2 and 18 ± 5 μU/ml, respectively, by 2 h. Insulin concentrations then fell back to concentrations that no longer differed by study end (7 ± 1 vs. 8 ± 1 μU/ml). This resulted in comparable suppression of EGP by study end (0.84 ± 0.2 and 0.63 ± 0.1 mg · kg-1 · min-1). Glucose disappearance was higher ( P < 0.01) during the final hour of the 3.1 than 1.55 mg · kg-1 · min-1 id infusion (4.47 ± 0.2 vs. 2.6 ± 0.1 mg · kg-1 · min-1), likely because of the slightly, but not significantly, higher glucose and insulin concentrations. We conclude that, in contrast to mice, selective portal glucose delivery at rates approximating EGP does not cause hypoglycemia in humans.


2000 ◽  
Vol 279 (4) ◽  
pp. E907-E911 ◽  
Author(s):  
Mirjam Dirlewanger ◽  
Philippe Schneiter ◽  
Eric Jéquier ◽  
Luc Tappy

Hepatic and extrahepatic insulin sensitivity was assessed in six healthy humans from the insulin infusion required to maintain an 8 mmol/l glucose concentration during hyperglycemic pancreatic clamp with or without infusion of 16.7 μmol · kg−1 · min−1fructose. Glucose rate of disappearance (GRd), net endogenous glucose production (NEGP), total glucose output (TGO), and glucose cycling (GC) were measured with [6,6-2H2]- and [2-2H1]glucose. Hepatic glycogen synthesis was estimated from uridine diphosphoglucose (UDPG) kinetics as assessed with [1-13C]galactose and acetaminophen. Fructose infusion increased insulin requirements 2.3-fold to maintain blood glucose. Fructose infusion doubled UDPG turnover, but there was no effect on TGO, GC, NEGP, or GRd under hyperglycemic pancreatic clamp protocol conditions. When insulin concentrations were matched during a second hyperglycemic pancreatic clamp protocol, fructose administration was associated with an 11.1 μmol · kg−1 · min−1increase in TGO, a 7.8 μmol · kg−1 · min−1increase in NEGP, a 2.2 μmol · kg−1 · min−1increase in GC, and a 7.2 μmol · kg−1 · min−1decrease in GRd ( P < 0.05). These results indicate that fructose infusion induces hepatic and extrahepatic insulin resistance in humans.


Sign in / Sign up

Export Citation Format

Share Document