Can Clearcutting Reset Successional Trajectories in Upland Oak–Hickory Forests? A Case Study from Mid-Missouri

2019 ◽  
Vol 117 (5) ◽  
pp. 435-442
Author(s):  
Benjamin O Knapp ◽  
Samantha E Anderson ◽  
Patrick J Curtin ◽  
Casey Ghilardi ◽  
Robert G Rives

Abstract Securing oak regeneration is a common management challenge in the central and eastern United States. We quantified the abundance of tree species groups in clearcuts in mid-Missouri more than 30 years following harvest to determine differences in species dominance based on aspect (exposed, protected, or ridge sites). Each tree was classified as “dominant” or “suppressed” based on its relative contribution to cumulative stand stocking, following concepts of the tree–area relation. Although maples or understory species were the most abundant across all sites, oaks and hickories contributed to more than 60 percent of the dominant stems on the exposed sites. In contrast, oaks and hickories made up less than 25 percent of the dominant stems on protected and ridge sites. Results indicate that clearcutting reset the successional trajectory, from a transition to maple dominance to maintaining oak–hickory dominance, on exposed sites but not on ridge or protected sites.

2008 ◽  
Vol 54 (1) ◽  
pp. 77-106 ◽  
Author(s):  
Daniel C. Dey ◽  
Douglass Jacobs ◽  
Ken McNabb ◽  
Gary Miller ◽  
V. Baldwin ◽  
...  

Abstract Although natural regeneration is often the best method for establishing new oak (Quercus spp.) stands, there are increasingly more situations in which high potential for oak regeneration failure dictates the use of artificial regeneration including direct seeding and planting seedlings. Additionally, afforestation planting programs frequently incorporate oak species. Artificial regeneration of oak stands is challenging for numerous reasons. In this article we synthesize the current state of knowledge regarding growing and planting the major oak species in the eastern United States, point out critical research gaps, and provide some general growing, planting, and stand tending guidelines and recommendations. Adequate site preparation, careful planting of healthy, genetically adapted seed or seedlings of high morphological and physiological quality, and subsequent control of competing vegetation and browse damage are necessary actions to assure regeneration success. Oak seedling survival in the early years after planting or seeding is a poor indicator of regeneration success. Successful regeneration may be defined as having a desired proportion of the oak planting stock reach dominant/codominant status in the stand. The costs of all activities required to produce a successful oak tree in the future stand should be considered in economic comparison of alternative prescriptions for oak regeneration.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 62-76
Author(s):  
William G. Luppold ◽  
Matthew S. Bumgardner

An examination of changes in growth, mortality, and removals of hardwood sawtimber in the eastern United States within the first two decades of the 21st century found large variations among regions and species groups. Changes in growth ranged from a 17% increase in the Lake States region to a statistically insignificant 1% in the Southern region. Most regions had relatively large increases in mortality. High levels of ash (Fraxinus spp.) mortality in the Northeast, Lake States, and Central regions likely were a result of the emerald ash borer (Agrilus planipennis). Hardwood sawtimber removals declined in all regions except the Lake States and Central regions, with the largest relative declines occurring in the Southern and Mid-Atlantic regions. With the exception of ash, there were no indications of immediate declines in eastern sawtimber volume. However, continual increases in mortality, a resurgence of removals, and reduced growth could cause sawtimber volume to plateau in the coming decades. The findings from this study indicated that there likely would be variations in these plateaus among the species groups and regions.


Zootaxa ◽  
2005 ◽  
Vol 1033 (1) ◽  
pp. 1 ◽  
Author(s):  
GARY A.P. GIBSON

The world species of Balcha Walker (Hymenoptera: Eupelmidae) are revised, keyed and illustrated. Sixteen species are recognized, including two that are newly classified in the genus, B. reticulata(Nikol’skaya) n. comb. and B. splendida (Girault) n. comb., and eight that are described as new, B. camptogastra n. sp., B. dictyota n. sp., B. enoptra n. sp., B. eximiassita n. sp., B. laciniosa n. sp., B. punctiscutum n. sp., B. reburra n. sp., and B. reticulifrons n. sp. Evidence for the monophyly of Balcha is discussed and the 16 species are segregated into four species groups based on morphological features. Balcha indica (Mani & Kaul) is newly recorded from the eastern United States (Maryland, Michigan, Virginia) as an accidental introduction from the Oriental region and as an adventitious parasitoid of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae).


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 989 ◽  
Author(s):  
Louis R. Iverson ◽  
Anantha M. Prasad ◽  
Matthew P. Peters ◽  
Stephen N. Matthews

We modeled and combined outputs for 125 tree species for the eastern United States, using habitat suitability and colonization potential models along with an evaluation of adaptation traits. These outputs allowed, for the first time, the compilation of tree species’ current and future potential for each unit of 55 national forests and grasslands and 469 1 × 1 degree grids across the eastern United States. A habitat suitability model, a migration simulation model, and an assessment based on biological and disturbance factors were used with United States Forest Service Forest Inventory and Analysis data to evaluate species potential to migrate or infill naturally into suitable habitats over the next 100 years. We describe a suite of variables, by species, for each unique geographic unit, packaged as summary tables describing current abundance, potential future change in suitable habitat, adaptability, and capability to cope with the changing climate, and colonization likelihood over 100 years. This resulting synthesis and summation effort, culminating over two decades of work, provides a detailed data set that incorporates habitat quality, land cover, and dispersal potential, spatially constrained, for nearly all the tree species of the eastern United States. These tables and maps provide an estimate of potential species trends out 100 years, intended to deliver managers and publics with practical tools to reduce the vast set of decisions before them as they proactively manage tree species in the face of climate change.


2017 ◽  
Vol 26 (10) ◽  
pp. 1153-1164 ◽  
Author(s):  
Brian J. Clough ◽  
Miranda T. Curzon ◽  
Grant M. Domke ◽  
Matthew B. Russell ◽  
Christopher W. Woodall

2019 ◽  
Vol 85 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Samuel N. Goward ◽  
Tatiana V. Loboda ◽  
Darrel L. Williams ◽  
Chengquan Huang

Sign in / Sign up

Export Citation Format

Share Document