scholarly journals The mechanical properties and fatigue responses of fiber metal nanocomposite laminates with double-edged cracks

2021 ◽  
Vol 37 ◽  
pp. 704-715
Author(s):  
Ming-Hwa R Jen ◽  
Li-Jen Hsu ◽  
Yu-Cheng Liang ◽  
Ying-Hui Wu

ABSTRACT The fiber metal laminates (FMLs) of hybrid Ti/APC-2 neat and nanocomposite laminates were fabricated. Geometrically symmetric and anti-symmetric double-edged cracks were cut in FMLs. From tensile tests, we received the load vs. displacement curves, stress intensity factors of mixed mode and mechanical properties. From cyclic tests, the load vs. cycles (P–N) curves, residual life and failure mechanisms were obtained. The mechanical properties of symmetrically cracked specimens were slightly lower than those of anti-symmetrically cracked counterparts. As the crack length increases and inclination angle decreases, the fatigue life decreases. The enhancement of nanopowder improved the ultimate load and fatigue life. The local stress intensity at the crack tip dominates the fatigue responses. The piece of elliptical part was observed from cyclic tests at failure. Although the attraction of two crack tips accelerated the crack growth towards each other, the delay to failure was caused by two crack tips circling around and forming a small piece of ellipse centrally.

Author(s):  
Ming-Hwa Jen ◽  
Li-Jen Hsu ◽  
Yu-Cheng Liang ◽  
Ying-Hui Wu

The fiber metal laminates (FMLs) of both Ti/APC-2 neat and nanocomposite laminates were fabricated. The double-edged cracks of both symmetry and anti-symmetry were cut in FMLs. From tensile tests we received the load vs. displacement curves and mechanical properties. From cyclic tests the load vs. cycles (P-N) curves, residual life, and failure mechanisms were obtained. The mechanical properties of symmetrically cracked specimens were slightly lower than those of anti-symmetrically cracked counterparts. As the crack length increasing and inclined angle decreasing, the fatigue life decreased. The enhancement of nano-powder improved the ultimate load and fatigue life. The local stress intensity at the crack tip dominates the fatigue responses. The piece of elliptical part was observed from cyclic tests at failure. Although the attraction of two crack tips accelerated the crack growth rate, however, the delay to failure was caused by forming a small piece of ellipse centrally.


2005 ◽  
Vol 297-300 ◽  
pp. 1770-1775 ◽  
Author(s):  
Young Woo Choi ◽  
Byeong Wook Noh ◽  
Kyung Chun Ham ◽  
Sung In Bae

The fatigue life of hexagon head and socket head bolts, attached to vehicle a wheel, is assessed and the estimation of the residual life of existing bolts in vehicle wheel is investigated. Field- measured load histories were applied in this test. Tensile tests and fatigue tests were performed to evaluate the effect of tightening torque and to obtain the basic experimental data. A three-dimensional finite element analysis was also performed to evaluate the local stress fields. Miner’s rule was used to predict the fatigue life of bolts. The results indicate the prediction of fatigue life of the bolts was in good agreement with the real life of vehicle wheel bolts in this test.


2013 ◽  
Vol 592-593 ◽  
pp. 425-428
Author(s):  
Ming Hwa R. Jen ◽  
Che Kai Chang ◽  
Bo Cyuan Lin

The aims of this study are to fabricate Ti/APC-2 hybrid composite laminates with and without (W/WO) nanoparticles and investigate the mechanical properties of laminates with single-edged cracks due to both tensile and cyclic tests. The mechanical properties such as ultimate tensile strength and longitudinal stiffness of original composite laminates W/WO nanoparticles were first obtained from the static tensile tests. However, the load-displacement diagrams were plotted for the crack laminates. The constant stress amplitude tension-tension cyclic tests were conducted to receive the S-N curves and fatigue data. The ultimate strengths for both Ti/APC-2 composite laminates W/WO nanoparticles were very close at varied crack length. Ti/APC-2 cross-ply nanocomposite laminates had better fatigue resistance than that of laminates without nanoparticles. The longer the crack length is, the more their properties are reduced. Also, the values of fracture toughness of both hybrid cracked laminates W/WO nanoparticles were obtained by rule of mixtures and found acceptable. Finally, in predicting crack growth rate and residual life, instead of commonly used Paris Law for metals, the modified method was adopted for hybrid cracked laminates. The prediction is not satisfactorily acceptable, even if most results are in good agreement with empirical data.


2015 ◽  
Vol 35 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Andrzej Ambroziak

Abstract This article describes the laboratory tests necessary to identify the mechanical properties of the polyvinylidene fluoride (PVDF)-coated fabrics named Precontraint 1202S and Precontraint 1302S. First, a short survey of the literature concerning the description of coated woven fabrics is presented. Second, the material parameters for PVDF-coated fabrics are specified on the basis of biaxial tensile tests. A comparison of the 1:1 biaxial and the uniaxial tensile tests results is also given. Additionally, biaxial cyclic tests were performed to observe the change of immediate mechanical properties under cyclic load. The article is aimed as an introduction to a comprehensive investigation of the mechanical properties of coated fabrics.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2019 ◽  
Vol 54 (13) ◽  
pp. 1705-1715
Author(s):  
MHR Jen ◽  
GT Kuo ◽  
YH Wu ◽  
YJ Chen

The mechanical properties and fatigue responses of Ti/APC-2 neat and nanocomposites with inclined single-edged cracks due to tensile and cyclic tests at elevated temperature were investigated. Two types of composite laminates [Ti/(0/90)s/Ti] were fabricated with and without (W/WO) nanoparticles SiO2 of optimal 1 wt.%. The geometry and dimensions of specimens were L × W × t = 240 × 25 × 1.55 mm3. The cracks were of constant length 3 mm and width 0.3 mm. The inclined angles were 0°, 45°, and 60°. Both the tensile and cyclic tests were conducted at elevated temperatures 25℃ (RT), 100℃, 125℃, and 150℃. From the tensile tests we obtained the load vs. displacement curves for both types of laminates with varied inclinations at elevated temperatures. Next, we received the applied load vs. cycles curves for the same laminates with inclined cracks at the corresponding temperature due to cyclic tests. According to the experimental data of both tensile and cyclic tests the mechanical properties, such as strength, stiffness, and life, decreased as the temperature rises. The greater the inclined angles were, the greater the strength and stiffness were. Similarly, the fatigue life was in the same trend. However, the effect of inclined angle on mechanical properties was more strong than those of temperature. The mechanical properties of nanocomposite laminates were higher than those of neat composite laminates, but not significant. The main reason was that the enhancement of spreading nano-powder silica on the laminate interfaces did not effectively eliminate the stress intensity at the crack tip locally.


2018 ◽  
Vol 165 ◽  
pp. 22025 ◽  
Author(s):  
Kin Shun Tsang ◽  
John H. L. Pang ◽  
Hsin Jen Hoh

A study was carried out to investigate the influence of the weld toe radii on the fatigue strength of butt welded joints loaded in bending and tension. Fatigue analysis starting from weld toe cracks in marine and offshore welded pipe specimens were conducted using cut-out four-point bend fatigue test specimens. Fatigue life can be enhanced by reducing the local stress concentration generated by weld toe radius effects. This study investigated the effect of different weld toe radii on the stress intensity factor at the region of the weld toe through Finite Element Analysis (FEA). FEA was used to model a butt welded steel plate extracted from a pipe subject to tension and four-point bend loading. Semi-elliptical surface (SESC) cracks were modeled at the weld toe region with different SESC crack depth and surface crack length. Four weld toe radii and two modes of loading were investigated. The stress intensity factors, weald toe magnification factors, or Mkc and Mka are reported and used for fatigue life prediction.


2017 ◽  
Vol 53 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Gholam Hossein Majzoobi ◽  
Mohammad Kashfi ◽  
Nicola Bonora ◽  
Gianluca Iannitti ◽  
Andrew Ruggiero ◽  
...  

In this investigation, a constitutive material model to predict elastic–plastic behavior of fiber metal laminates is introduced. The constants of the model can be obtained from the geometry and mechanical properties of the sublayers. This model can significantly reduce the computational efforts and central processing unit time by ignoring the contact between the fiber metal laminate layers. The ability of the model to predict plastic behavior of material makes it applicable to different metallic layers. Mechanical properties of each sublayer are obtained from tensile tests. The results of finite element analysis of the fiber metal laminate specimens using layered and bulk models revealed that the influence of glue was ignorable. The proposed model was validated by performing tensile tests on fiber metal laminate grades I and II and also on low and high metal volume fraction.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guowen Yao ◽  
Xuanrui Yu ◽  
Lifeng Gu ◽  
Yixing Jiang

Corrosion pits will lead to local stress concentration on the surface of steel strands and even shorter fatigue life and worse mechanical properties of steel strands. In order to explore the corrosion mechanics of steel strands to predict the fatigue life, accelerated salt spray corrosion test is carried out to simulate the corrosion laws of steel strands and record the changes of the corrosion degrees during the experiment, considering the coupling effects of alternating loads and chloride environment. Besides, the impact of stress amplitudes on the corrosion degrees of steel strands is quantitatively studied by the corrosion weight loss, and corroded steel strands in experiment are graded according to the corrosion weight loss to test the mechanical properties, respectively; the results show that the corrosion weight loss and tensile strength of steel strands obey the exponential distribution, and the relationship with elongation is linear. In addition, the relationships between the stress concentration coefficient and the pit length, width, and depth are obtained; with the three-dimensional linear regression theory, the accuracy of the regression model is verified by t-value test, laying a foundation for predicting the corrosion life of the cables.


2006 ◽  
Vol 324-325 ◽  
pp. 1269-1272
Author(s):  
Young Woo Choi ◽  
Byeong Wook Noh ◽  
Kyung Chun Ham ◽  
Sung In Bae

In this study, the fatigue life evaluation of automatic transfer devices under stress concentrations due to the notch effect is performed. To investigate residual life of a notched component, load histories were obtained through strain measurement. A fatigue test was performed on a specimen imitating a real component and results were compared with each notch root radius of the concentration area. Three-dimensional finite element analysis was also performed to evaluate the local stress fields. Miner’s rule was used to predict the fatigue life calculation. As a result, the predicted life of a notched component was in good agreement with a real component and introduced a special method for measuring load using real machine components.


Sign in / Sign up

Export Citation Format

Share Document