scholarly journals Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne

2006 ◽  
Vol 57 (13) ◽  
pp. 3419-3431 ◽  
Author(s):  
S. Ciannamea ◽  
K. Kaufmann ◽  
M. Frau ◽  
I. A. N. Tonaco ◽  
K. Petersen ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Francisco Macías ◽  
Raquel Afonso-Lehmann ◽  
Patricia E. Carreira ◽  
M. Carmen Thomas

Abstract Background Trypanosomatid genomes are colonized by active and inactive mobile DNA elements, such as LINE, SINE-like, SIDER and DIRE retrotransposons. These elements all share a 77-nucleotide-long sequence at their 5′ ends, known as Pr77, which activates transcription, thereby generating abundant unspliced and translatable transcripts. However, transcription factors that mediates this process have still not been reported. Methods TATA-binding protein (TBP) and small nuclear RNA-activating protein 50 kDa (SNAP50) recombinant proteins and specific antibodies raised against them were generated. Protein capture assay, electrophoretic mobility-shift assays (EMSA) and EMSA competition assays carried out using these proteins and nuclear proteins of the parasite together to specific DNA sequences used as probes allowed detecting direct interaction of these transcription factors to Pr77 sequence. Results This study identified TBP and SNAP50 as part of the DNA-protein complex formed by the Pr77 promoter sequence and nuclear proteins of Trypanosoma cruzi. TBP establishes direct and specific contact with the Pr77 sequence, where the DPE and DPE downstream regions are docking sites with preferential binding. TBP binds cooperatively (Hill coefficient = 1.67) to Pr77 and to both strands of the Pr77 sequence, while the conformation of this highly structured sequence is not involved in TBP binding. Direct binding of SNAP50 to the Pr77 sequence is weak and may be mediated by protein–protein interactions through other trypanosomatid nuclear proteins. Conclusions Identification of the transcription factors that mediate Pr77 transcription may help to elucidate how these retrotransposons are mobilized within the trypanosomatid genomes and their roles in gene regulation processes in this human parasite. Graphic abstract


2005 ◽  
Vol 386 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Alexander E.F. Smith ◽  
Farzin Farzaneh ◽  
Kevin G. Ford

AbstractIn order to demonstrate that an existing zinc-finger protein can be simply modified to enhance DNA binding and sequence discrimination in both episomal and chromatin contexts using existing zinc-finger DNA recognition code data, and without recourse to phage display and selection strategies, we have examined the consequences of a single zinc-finger extension to a synthetic three-zinc-finger VP16 fusion protein, on transcriptional activation from model target promoters harbouring the zinc-finger binding sequences. We report a nearly 10-fold enhanced transcriptional activation by the four-zinc-finger VP16 fusion protein relative to the progenitor three-finger VP16 protein in transient assays and a greater than five-fold enhancement in stable reporter-gene expression assays. A marked decrease in transcriptional activation was evident for the four-zinc-finger derivative from mutated regulatory regions compared to the progenitor protein, as a result of recognition site-size extension. This discriminatory effect was shown to be protein concentration-dependent. These observations suggest that four-zinc-finger proteins are stable functional motifs that can be a significant improvement over the progenitor three-zinc-finger protein, both in terms of specificity and the ability to target transcriptional function to promoters, and that single zinc-finger extension can therefore have a significant impact on DNA zinc-finger protein interactions. This is a simple route for modifying or enhancing the binding properties of existing synthetic zinc-finger-based transcription factors and may be particularly suited for the modification of endogenous zinc-finger transcription factors for promoter biasing applications.


2015 ◽  
Author(s):  
Scott M. Lundberg ◽  
William B. Tu ◽  
Brian Raught ◽  
Linda Z. Penn ◽  
Michael M. Hoffman ◽  
...  

Introduction: A cell's epigenome arises from interactions among regulatory factors --- transcription factors, histone modifications, and other DNA-associated proteins --- co-localized at particular genomic regions. Identifying the network of interactions among regulatory factors, the chromatin network, is of paramount importance in understanding epigenome regulation. Methods: We developed a novel computational approach, ChromNet, to infer the chromatin network from a set of ChIP-seq datasets. ChromNet has four key features that enable its use on large collections of ChIP-seq data. First, rather than using pairwise co-localization of factors along the genome, ChromNet identifies conditional dependence relationships that better discriminate direct and indirect interactions. Second, our novel statistical technique, the group graphical model, improves inference of conditional dependence on highly correlated datasets. Such datasets are common because some transcription factors form a complex and the same transcription factor is often assayed in different laboratories or cell types. Third, ChromNet's computationally efficient method and the group graphical model enable the learning of a joint network across all cell types, which greatly increases the scope of possible interactions. We have shown that this results in a significantly higher fold enrichment for validated protein interactions. Fourth, ChromNet provides an efficient way to identify the genomic context that drives a particular network edge, which provides a more comprehensive understanding of regulatory factor interactions. Results: We applied ChromNet to all available ChIP-seq data from the ENCODE Project, consisting of 1451 ChIP-seq datasets, which revealed previously known physical interactions better than alternative approaches. ChromNet also identified previously unreported regulatory factor interactions. We experimentally validated one of these interactions, between the MYC and HCFC1 transcription factors. Discussion: ChromNet provides a useful tool for understanding the interactions among regulatory factors and identifying novel interactions. We have provided an interactive web-based visualization of the full ENCODE chromatin network and the ability to incorporate custom datasets at http://chromnet.cs.washington.edu.


1995 ◽  
Vol 229 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Paul Shore ◽  
Andrew D. Sharrocks

Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 142 ◽  
Author(s):  
Arman Kulyyassov ◽  
Vasily Ogryzko

Protein–protein interactions of core pluripotency transcription factors play an important role during cell reprogramming. Cell identity is controlled by a trio of transcription factors: Sox2, Oct4, and Nanog. Thus, methods that help to quantify protein–protein interactions may be useful for understanding the mechanisms of pluripotency at the molecular level. Here, a detailed protocol for the detection and quantitative analysis of in vivo protein–protein proximity of Sox2 and Oct4 using the proximity-utilizing biotinylation (PUB) method is described. The method is based on the coexpression of two proteins of interest fused to a biotin acceptor peptide (BAP)in one case and a biotin ligase enzyme (BirA) in the other. The proximity between the two proteins leads to more efficient biotinylation of the BAP, which can be either detected by Western blotting or quantified using proteomics approaches, such as a multiple reaction monitoring (MRM) analysis. Coexpression of the fusion proteins BAP-X and BirA-Y revealed strong biotinylation of the target proteins when X and Y were, alternatively, the pluripotency transcription factors Sox2 and Oct4, compared with the negative control where X or Y was green fluorescent protein (GFP), which strongly suggests that Sox2 and Oct4 come in close proximity to each other and interact.


2013 ◽  
Vol 13 (5-6) ◽  
pp. 160-170 ◽  
Author(s):  
Jérôme Puig ◽  
Donaldo Meynard ◽  
Giang Ngan Khong ◽  
Germain Pauluzzi ◽  
Emmanuel Guiderdoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document