An efficient reasoning method on logic programming using partial evaluation in vector spaces

Author(s):  
Hien D Nguyen ◽  
Chiaki Sakama ◽  
Taisuke Sato ◽  
Katsumi Inoue

Abstract In this paper, we introduce methods of encoding propositional logic programs in vector spaces. Interpretations are represented by vectors and programs are represented by matrices. The least model of a definite program is computed by multiplying an interpretation vector and a program matrix. To optimize computation in vector spaces, we provide a method of partial evaluation of programs using linear algebra. Partial evaluation is done by unfolding rules in a program, and it is realized in a vector space by multiplying program matrices. We perform experiments using artificial data and real data, and show that partial evaluation has the potential for realizing efficient computation of huge scale of programs in vector spaces.

2007 ◽  
Vol 7 (1-2) ◽  
pp. 215-247 ◽  
Author(s):  
JOSEP SILVA ◽  
GERMÁN VIDAL

AbstractProgram slicing has been mainly studied in the context of imperative languages, where it has been applied to a wide variety of software engineering tasks, like program understanding, maintenance, debugging, testing, code reuse, etc. This work introduces the first forward slicing technique for declarative multi-paradigm programs which integrate features from functional and logic programming. Basically, given a program and aslicing criterion(a function call in our setting), the computed forward slice contains those parts of the original program which arereachablefrom the slicing criterion. Our approach to program slicing is based on an extension of (online) partial evaluation. Therefore, it provides a simple way to develop program slicing tools from existing partial evaluators and helps to clarify the relation between both methodologies. A slicing tool for the multi-paradigm language Curry, which demonstrates the usefulness of our approach, has been implemented in Curry itself.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1118
Author(s):  
Faisal Mehmood ◽  
Fu-Gui Shi

The generalization of binary operation in the classical algebra to fuzzy binary operation is an important development in the field of fuzzy algebra. The paper proposes a new generalization of vector spaces over field, which is called M-hazy vector spaces over M-hazy field. Some fundamental properties of M-hazy field, M-hazy vector spaces, and M-hazy subspaces are studied, and some important results are also proved. Furthermore, the linear transformation of M-hazy vector spaces is studied and their important results are also proved. Finally, it is shown that M-fuzzifying convex spaces are induced by an M-hazy subspace of M-hazy vector space.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


1998 ◽  
Vol 57 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Rachel Thomas

In this paper we consider the characterisation of those elements of a transformation semigroup S which are a product of two proper idempotents. We give a characterisation where S is the endomorphism monoid of a strong independence algebra A, and apply this to the cases where A is an arbitrary set and where A is an arbitrary vector space. The results emphasise the analogy between the idempotent generated subsemigroups of the full transformation semigroup of a set and of the semigroup of linear transformations from a vector space to itself.


1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.


2016 ◽  
Vol 101 (2) ◽  
pp. 277-287
Author(s):  
AARON TIKUISIS

It is shown that, for any field $\mathbb{F}\subseteq \mathbb{R}$, any ordered vector space structure of $\mathbb{F}^{n}$ with Riesz interpolation is given by an inductive limit of a sequence with finite stages $(\mathbb{F}^{n},\mathbb{F}_{\geq 0}^{n})$ (where $n$ does not change). This relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except with $\mathbb{F}$ replaced by the integers, $\mathbb{Z}$. Indeed, it shows that although Effros and Shen’s conjecture is false, it is true after tensoring with $\mathbb{Q}$.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-60
Author(s):  
Roland Coghetto

Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x1, x2, x3, x4 is given by: $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].


Author(s):  
Oleg Reinov ◽  
Asfand Fahad

The notions of V-dentability, V-s-dentability and V-f-dentability are introduced. It is shown, in particular, that if B is a bounded sequentially complete convex metrizable subset of a locally convex vector space E and V is a neighborhood of zero in E, then the following are equivalent: 1). B is subset V-dentable; 2). B is subset V-s-dentable; 3). B is subset V-f-dentable. It follows from this that for a wide class of locally convex vector spaces E, which strictly contains the class of (BM) spaces (introduced by Elias Saab in 1978), the following is true: every closed bounded subset of E is dentable if and only if every closed bounded subset of E is f-dentable. Also, we get a positive answer to the Saab's question (1978) of whether the subset dentability and the subset s-dentability are the same forthe bounded complete convex metrizable subsets of any l.c.v. space.


Author(s):  
Andrew Cropper ◽  
Sebastijan Dumančic

A major challenge in inductive logic programming (ILP) is learning large programs. We argue that a key limitation of existing systems is that they use entailment to guide the hypothesis search. This approach is limited because entailment is a binary decision: a hypothesis either entails an example or does not, and there is no intermediate position. To address this limitation, we go beyond entailment and use 'example-dependent' loss functions to guide the search, where a hypothesis can partially cover an example. We implement our idea in Brute, a new ILP system which uses best-first search, guided by an example-dependent loss function, to incrementally build programs. Our experiments on three diverse program synthesis domains (robot planning, string transformations, and ASCII art), show that Brute can substantially outperform existing ILP systems, both in terms of predictive accuracies and learning times, and can learn programs 20 times larger than state-of-the-art systems.


2020 ◽  
Vol 19 ◽  

The purpose of the present paper is to introduce the new class of ω b - topological vector spaces. We study several basic and fundamental properties of ω b - topological and investigate their relationships with certain existing spaces. Along with other results, we prove that transformation of an open (resp. closed) set in aω b - topological vector space is ω b - open (resp. closed). In addition, some important and useful characterizations of ω b - topological vector spaces are established. We also introduce the notion of almost ω b - topological vector spaces and present several general properties of almost ω b - topological vector spaces.


Sign in / Sign up

Export Citation Format

Share Document