Assessing Central Nervous System Symptoms

2009 ◽  
pp. 791-800
Author(s):  
Elson L. So

The major value and primary application of clinical neurophysiology is in the assessment and characterization of neurologic disease. Selection of appropriate studies for the problem of an individual patient requires a careful clinical evaluation to determine possible causes of the patient’s symptoms. The nature of the symptoms and the conclusions of the clinical evaluation are the best guides to appropriate use of clinical neurophysiologic testing.

2009 ◽  
pp. 801-838
Author(s):  
Devon I. Rubin ◽  
Jasper R. Daube

The major value and primary application of clinical neurophysiology is in the assessment and characterization of neurologic disease. Selection of appropriate studies for the problem of an individual patient requires a careful clinical evaluation to determine possible causes of the patient’s symptoms. The nature of the symptoms and the conclusions of the clinical evaluation are the best guides to appropriate use of clinical neurophysiologic testing.


2018 ◽  
pp. 7-12
Author(s):  
L. E. Vigovskaya ◽  
A. R. Gaynutdinov

Pathogenesis of cell apoptosis with development of neurotoxic reactions on various levels of Central Nervous System in premature babies is presented here. Also, predictive characterization of various neurologic disorders in premature patients is described. Analysis of vegetative regulation allows selection of rehabilitation measures in born at gestational ages.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1778
Author(s):  
Pakhuri Mehta ◽  
Przemysław Miszta ◽  
Sławomir Filipek

The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer’s disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014–2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.


1989 ◽  
Vol 264 (31) ◽  
pp. 18552-18560 ◽  
Author(s):  
N C Thambi ◽  
F Quan ◽  
W J Wolfgang ◽  
A Spiegel ◽  
M Forte

Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
T Watanabe ◽  
D R Kankel

Abstract Previous genetic studies have shown that wild-type function of the l(1)ogre (lethal (1) optic ganglion reduced) locus is essential for the generation and/or maintenance of the postembryonic neuroblasts including those from which the optic lobe is descended. In the present study molecular isolation and characterization of the l(1)ogre locus was carried out to study the structure and expression of this gene in order to gain information about the nature of l(1)ogre function and its relevance to the development of the central nervous system. About 70 kilobases (kb) of genomic DNA were isolated that spanned the region where l(1)ogre was known to reside. Southern analysis of a l(1)ogre mutation and subsequent P element-mediated DNA transformation mapped the l(1)ogre+ function within a genomic fragment of 12.5 kb. Northern analyses showed that a 2.9-kb message transcribed from this 12.5-kb region represented l(1)ogre. A 2.15-kb portion of a corresponding cDNA clone was sequenced. An open reading frame (ORF) of 1,086 base paris was found, and a protein sequence of 362 amino acids with one highly hydrophobic segment was deduced from conceptual translation of this ORF.


Author(s):  
Marleen H. van Coevorden-Hameete ◽  
Maarten J. Titulaer ◽  
Marco W. J. Schreurs ◽  
Esther de Graaff ◽  
Peter A. E. Sillevis Smitt ◽  
...  

1981 ◽  
Vol 96 (3) ◽  
pp. 394-397 ◽  
Author(s):  
Jau-Nan Lee ◽  
Markku Seppälä ◽  
Tim Chard

Abstract. High pressure liquid chromatography (HPLC) and radioimmunoassay were employed to characterize luteinizing hormone-releasing factor (LRF)-like material in the human placenta. Methanol extracts of the placenta were washed with acetic acid and chloroform, further purified on coarse octadecylsilane columns, fractionated on HPLC, and tested by radioimmunoassay. In HPLC, placental LRF had the same retention time as synthetic LRF, and such fractions gave an inhibition curve which was parallel to that of synthetic LRF in radioimmunoassav. It is concluded that human placental I.RF is similar or identical to LRF in the central nervous system.


1992 ◽  
Vol 32 (4) ◽  
pp. 593-604 ◽  
Author(s):  
V. S. Sapirstein ◽  
R. Durrie ◽  
B. Cherksey ◽  
M. E. Beard ◽  
C. J. Flynn ◽  
...  

2021 ◽  
Author(s):  
Asif Hasan Sharif

The fractal component in the complex fluctuations of the human heart rate represents a dynamic feature that is widely observed in diverse fields of natural and artificial systems. It is also of clinical significance as the diminishing of the fractal dynamics appears to correlate with heart disease processes and adverse cardiac events in old age. While the autonomic nervous system directly controls the pacemaker cells of the heart, it does not provide an immediate characterization of the complex heart rate variability (HRV). The central nervous system (CNS) is known to be an important modulator for various cardiac functions. However, its role in the fractal HRV is largely unclear. In this research, human experiments were conducted to study the influence of the central nervous system on fractal dynamics of healthy human HRV. The head up tilt (HUT) maneuver is used to provide a perturbation to the autonomic nervous system. The subsequent fractal effect in the simultaneously recorded electroencephalography and beat-to-beat heart rate data was examined. Using the recently developed multifractal factorization technique, the common multifractality in the data fluctuation was analyzed. An empirical relationship was uncovered which shows the increase (decrease) in HRV multifractality is associated with the increase (decrease) in multifractal correlation between scale-free HRV and the cortical expression of the brain dynamics in 8 out of 11 healthy subjects. This observation is further supported using surrogate analysis. The present findings imply that there is an integrated central-autonomic component underlying the cortical expression of the HRV fractal dynamics. It is proposed that the central element should be incorporated in the fractal HRV analysis to gain a more comprehensive and better characterization of the scale-free HRV dynamics. This study provides the first contribution to the HRV multifractal dynamics analysis in HUT. The multivariate fractal analysis using factorization technique is also new and can be applied in the more general context in complex dynamics research.


Sign in / Sign up

Export Citation Format

Share Document