Is Compassion Innate? A Physiological Perspective

Author(s):  
Agnes M.F. Wong

Three interrelated biological subsystems subserve compassion: the autonomic nervous, neuroendocrine, and central nervous systems. The autonomic nervous system—the newly evolved ventral myelinated vagus nerve of the parasympathetic nervous system—allows moment-to-moment fine-tuning of physiological and emotional regulation to promote social engagement behaviours. The neuroendocrine system—the hormones and neurotransmitters vasopressin and oxytocin—facilitates kinship and clan emotional bonding. The central nervous system—an enlarged neocortex (including the prefrontal and cingulate cortices)—allows improved self–other differentiation and the ability to understand another’s emotion. The author reviews the first two subsystems in this chapter, showing that compassion is innate. However, it could be obscured by the adversity of individual experiences and by social context or conditioning. The author also shows that the physiological mechanisms that underlie the expression of compassion in the giver also elicit similar effects in those who receive and benefit from it.

2021 ◽  
Vol 63 (1) ◽  
pp. 65-70
Author(s):  
Sebastian Szyper ◽  
Paweł Zalewski

Introduction: The persistent high rate of disability in people after stroke in Poland and globally requires continuous analysis of the effectiveness of rehabilitation. This review of the global literature analyzes the effectiveness of two therapeutic concepts in relation to changes in the autonomic nervous system and gait quality. Material and Methods: We searched PubMed for available literature using keywords. The search included literature available in English between January 2000 and June 2017. Results: Most studies described in this literature review did not show any significant advantage in terms of effectiveness of neurorehabilitation methods over conventional ones. Conclusions: The effectiveness of rehabilitation focuses mainly on modulating brain plasticity associated with neurologic deficits in the central nervous system, ignoring the autonomic nervous system.


2015 ◽  
Vol 28 (3) ◽  
pp. 627-636 ◽  
Author(s):  
Gustavo Henrique de Oliveira Mondoni ◽  
Luiz Carlos Marques Vanderlei ◽  
Bruno Saraiva ◽  
Franciele Marques Vanderlei

AbstractIntroduction It is known that physical exercise is beneficial and precipitates adjustments to the autonomic nervous system. However, the effect of exercise on cardiac autonomic modulation in children, despite its importance, is poorly investigated.Objective To bring together current information about the effects of exercise on heart rate variability in healthy and obese children.Methods The literature update was performed through a search for articles in the following databases; PubMed, PEDro, SciELO and Lilacs, using the descriptors “exercise” and “child” in conjunction with the descriptors “autonomic nervous system”, “sympathetic nervous system”, “parasympathetic nervous system” and also with no descriptor, but the key word of this study, “heart rate variability”, from January 2005 to December 2012.Results After removal of items that did not fit the subject of the study, a total of 9 articles were selected, 5 with healthy and 4 with obese children.Conclusion The findings suggest that exercise can act in the normalization of existing alterations in the autonomic nervous system of obese children, as well as serve as a preventative factor in healthy children, enabling healthy development of the autonomic nervous system until the child reaches adulthood.


2021 ◽  
Author(s):  
Asif Hasan Sharif

The fractal component in the complex fluctuations of the human heart rate represents a dynamic feature that is widely observed in diverse fields of natural and artificial systems. It is also of clinical significance as the diminishing of the fractal dynamics appears to correlate with heart disease processes and adverse cardiac events in old age. While the autonomic nervous system directly controls the pacemaker cells of the heart, it does not provide an immediate characterization of the complex heart rate variability (HRV). The central nervous system (CNS) is known to be an important modulator for various cardiac functions. However, its role in the fractal HRV is largely unclear. In this research, human experiments were conducted to study the influence of the central nervous system on fractal dynamics of healthy human HRV. The head up tilt (HUT) maneuver is used to provide a perturbation to the autonomic nervous system. The subsequent fractal effect in the simultaneously recorded electroencephalography and beat-to-beat heart rate data was examined. Using the recently developed multifractal factorization technique, the common multifractality in the data fluctuation was analyzed. An empirical relationship was uncovered which shows the increase (decrease) in HRV multifractality is associated with the increase (decrease) in multifractal correlation between scale-free HRV and the cortical expression of the brain dynamics in 8 out of 11 healthy subjects. This observation is further supported using surrogate analysis. The present findings imply that there is an integrated central-autonomic component underlying the cortical expression of the HRV fractal dynamics. It is proposed that the central element should be incorporated in the fractal HRV analysis to gain a more comprehensive and better characterization of the scale-free HRV dynamics. This study provides the first contribution to the HRV multifractal dynamics analysis in HUT. The multivariate fractal analysis using factorization technique is also new and can be applied in the more general context in complex dynamics research.


Author(s):  
J. Eric Ahlskog

Urinary problems occur with normal aging. In women they often relate to the changes in female anatomy due to the delivering of babies. With superimposed age-related changes in soft tissues, laxity may result in incontinence (loss of urinary control), especially with coughing, laughing, or straining. In men the opposite symptom tends to occur: urinary hesitancy (inability to evacuate the bladder). This is due to constriction of the bladder outlet by an enlarging prostate; the prostate normally surrounds the urethra, through which urine passes. DLB and PDD are often associated with additional bladder problems. Recall that the autonomic nervous system regulates bladder function and that this system tends to malfunction in Lewy disorders. Hence, reduced bladder control is frequent among those with DLB, PDD, and Parkinson’s disease. This condition is termed neurogenic bladder, which implies that the autonomic nervous system control of bladder reflexes is not working properly. This may manifest as urgency with incontinence or hesitancy. Neurogenic bladder problems require different strategies than those used for treating the simple age-related problems that develop in mid-life and beyond. Moreover, there are certain caveats to treatment once a neurogenic bladder is recognized. The bladder is simply a reservoir that holds urine. It is located in the lower pelvis and is distant from the kidneys. The kidneys essentially filter the circulating blood and make the urine. The urine flows down from the kidneys into the bladder, as shown in Figure 14.1. Normally, as the bladder slowly fills with urine, a reflex is triggered when it is nearly full. This results in conscious awareness of the need to urinate, plus it primes the reflexive tendency of the bladder to contract in order to expel the urinary contents. The bladder is able to contract because of muscles in the bladder walls. Normally, nerves activate these muscles at the appropriate time, which forcefully squeeze the bladder, expelling the urine. Nerve sensors in the bladder wall are activated by bladder filling and transmit this information to the central nervous system, ramping up bladder wall muscle activity.


Author(s):  
Kevin T. Gobeske ◽  
Eelco F. M. Wijdicks

Serotonin syndrome affects the central nervous system, the autonomic nervous system, and the neuromuscular system and can have acute and potentially life-threatening manifestations. By definition, serotonin syndrome is associated with changes in serotonin exposure and thus might be described more accurately as serotonergic excess or serotonin toxicity. The central nervous system effects of serotonin involve regulation of attention, arousal, mood, learning, appetite, and temperature.


Neuroanatomy ◽  
2017 ◽  
pp. 117-138
Author(s):  
Adam J Fisch

This chapter provides an overview of the autonomic nervous system and respective instructions for drawing its various components. These include the, parasympathetic nervous system, sympathetic nervous system, lower urinary system, baroreceptor reflex, respiration, and digestive tract. The chapter discusses the various functions of elements of these systems, and it presents conditions and illnesses specifically related to disorders in elements of the autonomic nervous system, such as cardiac rhythm abnormalities (arrhythmias), respiratory failure, gut dysmotility, bladder dysmotility, and skin manifestations, such as hair fiber loss and sweating.


2011 ◽  
Vol 366 (1574) ◽  
pp. 2171-2180 ◽  
Author(s):  
Gabriela de Brito Sanchez ◽  
Martin Giurfa

Understanding taste processing in the nervous system is a fundamental challenge of modern neuroscience. Recent research on the neural bases of taste coding in invertebrates and vertebrates allows discussion of whether labelled-line or across-fibre pattern encoding applies to taste perception. While the former posits that each gustatory receptor responds to one stimulus or a very limited range of stimuli and sends a direct ‘line’ to the central nervous system to communicate taste information, the latter postulates that each gustatory receptor responds to a wider range of stimuli so that the entire population of taste-responsive neurons participates in the taste code. Tastes are represented in the brain of the fruitfly and of the rat by spatial patterns of neural activity containing both distinct and overlapping regions, which are in accord with both labelled-line and across-fibre pattern processing of taste, respectively. In both animal models, taste representations seem to relate to the hedonic value of the tastant (e.g. palatable versus non-palatable). Thus, although the labelled-line hypothesis can account for peripheral taste processing, central processing remains either unknown or differs from a pure labelled-line coding. The essential task for a neuroscience of taste is, therefore, to determine the connectivity of taste-processing circuits in central nervous systems. Such connectivity may determine coding strategies that differ significantly from both the labelled-line and the across-fibre pattern models.


2008 ◽  
Vol 295 (2) ◽  
pp. H578-H586 ◽  
Author(s):  
Yan Bai ◽  
Kin L. Siu ◽  
Salman Ashraf ◽  
Luca Faes ◽  
Giandomenico Nollo ◽  
...  

We investigated whether autonomic nervous system imbalance imposed by pharmacological blockades and associated with acute myocardial infarction (AMI) is manifested as modifications of the nonlinear interactions in heart rate variability signal using a statistically based bispectrum method. The statistically based bispectrum method is an ideal approach for identifying nonlinear couplings in a system and overcomes the previous limitation of determining in an ad hoc way the presence of such interactions. Using the improved bispectrum method, we found significant nonlinear interactions in healthy young subjects, which were abolished by the administration of atropine but were still present after propranolol administration. The complete decoupling of nonlinear interactions was obtained with double pharmacological blockades. Nonlinear couplings were found to be the strongest for healthy young subjects followed by degradation with old age and a complete absence of such couplings for the old age-matched AMI subjects. Our results suggest that the presence of nonlinear couplings is largely driven by the parasympathetic nervous system regulation and that the often-reported autonomic nervous system imbalance seen in AMI subjects is manifested as the absence of nonlinear interactions between the sympathetic and parasympathetic nervous regulations.


Sign in / Sign up

Export Citation Format

Share Document