Cellular and molecular basis of haematopoiesis

2020 ◽  
pp. 5172-5181
Author(s):  
Paresh Vyas ◽  
N. Asger Jakobsen

Haematopoiesis involves a regulated set of developmental stages from haematopoietic stem cells (HSCs) that produce haematopoietic progenitor cells that then differentiate into more mature haematopoietic lineages, which provide all the key functions of the haematopoietic system. Definitive HSCs first develop within the embryo in specialized regions of the dorsal aorta and umbilical arteries and then seed the fetal liver and bone marrow. At the single-cell level, HSCs have the ability to reconstitute and maintain a functional haematopoietic system over extended periods of time in vivo. They (1) have a self-renewing capacity during the life of an organism, or even after transplantation; (2) are multipotent, with the ability to make all types of blood cells; and (3) are relatively quiescent, with the ability to serve as a deep reserve of cells to replenish short-lived, rapidly proliferation progenitors. Haematopoietic progenitor cells are unable to maintain long-term haematopoiesis in vivo due to limited or absent self-renewal. Rapid proliferation and cytokine responsiveness enables increased blood cell production under conditions of stress. Lineage commitment means limited cell type production. The haematopoietic stem cell niche is an anatomically and functionally defined regulatory environment for stem cells modulates self-renewal, differentiation, and proliferative activity of stem cells, thereby regulating stem cell number. Haematopoietic reconstitution during bone marrow transplantation is mediated by a succession of cells at various stages of development. More mature cells contribute to repopulation immediately following transplantation. With time, cells at progressively earlier stages of development are involved, with the final stable repopulation being provided by long-lived, multipotent HSCs. Long-term haematopoiesis is sustained by a relatively small number of HSCs.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 118-118
Author(s):  
Thalia Papayannopoulou ◽  
Gregory V. Priestley ◽  
Linda M. Scott

Abstract We have previously shown that bone marrow (BM) cells from adult mice with conditional ablation of α4 integrin transplanted into lethally-irradiated recipients have a partial impairment in their homing and especially their short-term engraftment (MCB, 23:9349, 2003). However, the ability of α4−/− stem cells (HSC) to maintain post-transplant long-term hematopoiesis and to self renew was not tested. Therefore, we performed competitive repopulation experiments: α4+/+ cells mixed in equal proportions with α4−/− cells (verified by FACS) were given to each of 10 lethally irradiated recipients (0.5x10 6/mouse). At 30, 100, 200, and 298 days post-transplant, engraftment was evaluated in blood (PB) and BM. By d. 200, 7 of the 9 surviving mice had 81.6±3% α4+/+ cells in their PB and 97.5±0.1% in their BM. In the remaining 2 mice the proportion of α4+/+ PB cells was 35.6±12%, however by d. 298 increased (93.4±2.5% in BM). To overcome a putative partial homing defect for long-term repopulating cells, similar to the one documented using a surrogate CFU-C assay, we repeated the competitive repopulation experiment using not only 1:1, but an increased ratio of α4−/− cells to 3:1 (or 6:1 by CFU-C ratio) given in splenectomized recipients. By 12 wks α4+/+ cells among Gr1+ were 77±3.7% in PB in 10 mice with 1:1 initial transplant and 79±3.8% in 10 given 3:1 cells. These results showed that 4+/+ cells greatly outcompete the α4−/−cells and contributions by α4−/− cells are lost early and late post-transplant. Further insight was provided by transplantation of α4−/− HSC without competitor cells. 12 mice transplanted with α4−/− BM cells were sacrificed at 2 wks (6 mice), at 10 wks (3 mice) and 1 year (3 mice) later. Despite normal PB counts, evaluation of bone marrow and spleen at all times post-transplant showed subnormal values for progenitor cells vs. concurrently transplanted controls. 10 wks post-transplant 1 of the 3 mice sacrificed showed ~50% α4+/+ cells in circulation, while the other 2 had mostly α4−/− cells. From the latter (pooled BM), 2° transplants were carried out and sacrificed 14 wks later. At that time the 5 recipients had 27.5%±4.7 α4+/+ cells in their circulation. At 1 year the 3 primary transplant surviving mice had mostly α4−/− hematapoiesis and served as donors (pooled BM) for 2° transplants (n=9), evaluated 26 wks later. 5 of 9 2° recipients showed mostly α4+/+ cells, whereas 4 recipients had a mean of 6.8±1.9% α4+/+ cells in their blood. Each of these 4 recipients served as a 3° donor for 20 transplants (5/donor) which again were evaluated 25 wks later. There was a 30% survival at that time, and all 6 surviving mice were reconstituted with α4+/+ cells (multi-lineage; contributed by host and not by non-ablated donor stem cells). These data suggested that although long-term repopulation can be established with α4−/− cells in 1°recipients, hematopoiesis is quantitatively abnormal and cannot be sustained beyond a 2° transplant. Taken together, all our transplantation experiments provide compelling evidence that α4−/− HSC have a competitive disadvantage compared to +/+ cells in transplantation, and a deficit in maintaining normal hematopoiesis and stem cell self-renewal. We speculate that α4−/− HSC either are not settled to extramedullary niches supporting sustained hematopoiesis, or do not respond to signals emanating from the stem cell niche. Either way, the data underscore the requirement of α4 integrin in the interaction of HSC with the stem cell niche in order to realize their full self-renewal potential.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1395-1395
Author(s):  
Morayma Reyes ◽  
Jeffrey S. Chamberlain

Abstract Multipotent Adult Progenitor Cells (MAPC) are bone marrow derived stem cells that can be extensively expanded in vitro and can differentiate in vivo and in vitro into cells of all three germinal layers: ectoderm, mesoderm, endoderm. The origin of MAPC within bone marrow (BM) is unknown. MAPC are believed to be derived from the BM stroma compartment as they are isolated within the adherent cell component. Numerous studies of bone marrow chimeras in human and mouse point to a host origin of bone marrow stromal cells, including mesenchymal stem cells. We report here that following syngeneic bone marrow transplants into lethally irradiated C57Bl/6 mice, MAPC are of donor origin. When MAPC were isolated from BM chimeras (n=12, 4–12 weeks post-syngeneic BM transplant from a transgenic mouse ubiquitously expressing GFP), a mixture of large and small GFP-positive and GFP-negative cells were seen early in culture. While the large cells stained positive for stroma cell markers (smooth muscle actin), mesenchymal stem cell makers (CD73, CD105, CD44) or macrophages (CD45, CD14), the small cells were negative for all these markers and after 30 cell doublings, these cells displayed the classical phenotype of MAPC (CD45−,CD105−, CD44−, CD73−, FLK-1+(vascular endothelial growth factor receptor 2, VEGFR2), Sca-1+,CD13+). In a second experiment, BM obtained one month post BM transplant (n=3) was harvested and mononuclear cells were sorted as GFP-positive and GFP-negative cells and were cultured in MAPC expansion medium. MAPC grew from the GFP-positive fraction. These GFP positive cells displayed the typical MAPC-like immunophenotypes, displayed a normal diploid karyotype and were expanded for more than 50 cell doublings and differentiated into endothelial cells, hepatocytes and neurons. To rule out the possibility that MAPC are the product of cell fusion between a host and a donor cell either in vivo or in our in vitro culture conditions, we performed sex mismatched transplants of female GFP donor BM cells into a male host. BM from 5 chimeras were harvested 4 weeks after transplant and MAPC cultures were established. MAPC colonies were then sorted as GFP-positive and GFP- negative and analyzed for the presence of Y-chromosome by FISH analysis. As expected all GFP-negative (host cells) contained the Y-chromosome whereas all GFP-positive cells (donor cells) were negative for the Y-chromosome by FISH. This proves that MAPC are not derived from an in vitro or in vivo fusion event. In a third study, BM mononuclear cells from mice that had been previously BM-transplanted with syngeneic GFP-positive donors (n=3) were transplanted into a second set of syngeneic recipients (n=9). Two months after the second transplant, BM was harvested and mononuclear cells were cultured in MAPC medium. The secondary recipients also contained GFP-positive MAPC. This is the first demonstration that BM transplantation leads to the transfer of cells that upon isolation in vitro generate MAPCs and, whatever the identity of this cell may be, is eliminated by irradiation. We believe this is an important observation as MAPC hold great clinical potential for stem cell and/or gene therapy and, thus, BM transplant may serve as a way to deliver and reconstitute the MAPC population. In addition, this study provides insight into the nature of MAPC. The capacity to be transplantable within unfractionated BM transplant renders a functional and physiological distinction between MAPC and BM stromal cells. This study validates the use of unfractionated BM transplants to study the nature and possible in vivo role of MAPC in the BM.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2476-2476
Author(s):  
Kasia Mierzejewska ◽  
Ewa Suszynska ◽  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Maja Maj ◽  
...  

Abstract Background Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix > BFU-E > CFU-Meg > CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4374-4374
Author(s):  
Roshanak Ghazanfari ◽  
Hongzhe Li ◽  
Dimitra Zacharaki ◽  
Simón Méndez-Ferrer ◽  
Stefan Scheding

Abstract Human bone marrow contains a rare population of non-hematopoietic mesenchymal stromal cells (BM-MSC) with multilineage differentiation capacity, which are essential constituents of the hematopoietic microenvironment. Self-renewal and differentiation are the two key properties of somatic stem cells, however, stem cell properties of human adult BM-MSC have not been demonstrated conclusively yet. We have previously shown that low/negative expression of PDGFRα on linneg/CD45neg/CD271pos cells identified a highly enriched population of primary BM-MSC in adult human bone marrow (Li et al. Blood, 2013, 122:3699). Based on this work, the current study aimed to investigate the in-vitro and in-vivo stem cell properties of this putative stromal stem cell population. The in-vitro clonogenic potential of freshly sorted human linneg/CD45neg/CD271pos/PDGFRlow/neg cells was evaluated by utilizing the CFU-F assay as well as the recently-developed mesensphere assay, which enables MSC amplification while preserving an immature phenotype (Isern et al, Cell Reports 2013, 30: 1714-24). Comparable colony frequencies were obtained with both assays (19.3 ± 2 and 17.5 ± 2.3 CFU-F and spheres per 100 plated cells, respectively, n=6, p=0.19). In order to test whether both assays identified the same population of clonogenic cells, colonies and spheres were replated under both conditions for up to three generations. The results showed comparable capacities of CFU-F and mesenspheres to form secondary and tertiary CFU-F and spheres. In-vitro self-renewal as indicated by increasing numbers of CFU-F and spheres (416.6 ± 431.7-fold and 49.5 ± 65.7-fold, respectively, n=3) was observed up to the third generation and decreased thereafter. The total number of generations was five (CFU-F) and six (spheres). In-vitro differentiation assays with both, CFU-F- and sphere-derived cells (tested until passage three) demonstrated tri-lineage differentiation potential (adipocytes, osteoblasts, chondrocytes). In addition, CFU-Fs and spheres had comparable surface marker profiles (CD73, CD90, CD105, and HLA-ABC positive; CD31, CD34 and HLA-DR negative), except for CD90, which was higher expressed on CFU-Fs. To investigate in-vivo self-renewal and differentiation potential of the putative stromal stem cells, linneg/CD45neg/CD271pos/PDGFRlow/neg -derived CFU-F and spheres were serially transplanted s.c into NSG mice. After 8 weeks, implants were harvested, human cells were FACS-isolated (CD90 and CD105 expression), and re-assayed under CFU-F and sphere conditions. Whereas in-vivo self-renewal of CFU-F could not be shown (111.5 ± 36 –fold decrease in total CFU-F numbers after primary transplantation, n=3), sphere self-renewal was clearly demonstrated by increased numbers of spheres after primary as well as secondary transplantation (1.13 ± 0.05 and 2.06 ± 0.26 –fold, respectively, n=3), which is remarkable given the fact that the number of recovered human cells is underestimated due to the isolation approach. Here, confirming GFP-marking experiments are ongoing. Finally, preliminary data indicate that linneg/CD45neg/CD271pos/PDGFRlow/neg –derived spheres display full in-vivo differentiation capacity in primary and secondary transplantations. Taken together, our data demonstrate - for the first time - that primary human linneg/CD45neg/CD271pos/PDGFRlow/neg cells meet stringent stem cell criteria, i.e. in-vitro and in-vivo self-renewal and differentiation. These findings answer the long-open question of the potential stem cell properties of adult human MSC and will enable to better understand the properties of native BM-MSC and their biological role in the bone marrow. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4354-4362 ◽  
Author(s):  
Nobuko Uchida ◽  
Annabelle M. Friera ◽  
Dongping He ◽  
Michael J. Reitsma ◽  
Ann S. Tsukamoto ◽  
...  

Abstract The DNA synthesis inhibitor hydroxyurea (HU) was administered to determine whether it induces changes in the cell-cycle status of primitive hematopoietic stem cells (HSCs)/progenitors. Administration of HU to mice leads to bone marrow accumulation of c-kit+Thy-1.1loLin−/loSca-1+ (KTLS) cells in S/G2/M phases of the cell cycle. HU is a relatively nontoxic, reversible cell-cycle agent that can lead to approximately a threefold expansion of KTLS cells in vivo and approximately an eightfold increase in the number of KTLS cells in S/G2/M. HSCs in HU-treated mice have undiminished multilineage long-term and short-term clonal reconstitution activity.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Shai Erlich ◽  
Silvia R.P. Miranda ◽  
Jan W.M. Visser ◽  
Arie Dagan ◽  
Shimon Gatt ◽  
...  

Abstract The general utility of a novel, fluorescence-based procedure for assessing gene transfer and expression has been demonstrated using hematopoietic stem and progenitor cells. Lineage-depleted hematopoietic cells were isolated from the bone marrow or fetal livers of acid sphingomyelinase–deficient mice, and retrovirally transduced with amphotropic or ecotropic vectors encoding a normal acid sphingomyelinase (ASM) cDNA. Anti–c-Kit antibodies were then used to label stem- and progenitor-enriched cell populations, and the Bodipy fluorescence was analyzed in each group after incubation with a Bodipy-conjugated sphingomyelin. Only cells expressing the functional ASM (ie, transduced) could degrade the sphingomyelin, thereby reducing their Bodipy fluorescence as compared with nontransduced cells. The usefulness of this procedure for the in vitro assessment of gene transfer into hematopoietic stem cells was evaluated, as well as its ability to provide an enrichment of transduced stem cells in vivo. To show the value of this method for in vitro analysis, the effects of retroviral transduction using ecotropic versus amphotropic vectors, various growth factor combinations, and adult bone marrow versus fetal liver stem cells were assessed. The results of these studies confirmed the fact that ecotropic vectors were much more efficient at transducing murine stem cells than amphotropic vectors, and that among the three most commonly used growth factors (stem cell factor [SCF] and interleukins 3 and 6 [IL-3 and IL-6]), SCF had the most significant effect on the transduction of stem cells, whereas IL-6 had the most significant effect on progenitor cells. In addition, it was determined that fetal liver stem cells were only approximately twofold more “transducible” than stem cells from adult bone marrow. Transplantation of Bodipy-selected bone marrow cells into lethally irradiated mice showed that the number of spleen colony-forming units that were positive for the retroviral vector (as determined by polymerase chain reaction) was 76%, as compared with 32% in animals that were transplanted with cells that were nonselected. The methods described within this manuscript are particularly useful for evaluating hematopoietic stem cell gene transfer in vivo because the marker gene used in the procedure (ASM) encodes a naturally occurring mammalian enzyme that has no known adverse effects, and the fluorescent compound used for selection (Bodipy sphingomyelin) is removed from the cells before transplantation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 404-404 ◽  
Author(s):  
Heather A Himburg ◽  
Pamela Daher ◽  
J. Lauren Russell ◽  
Phuong Doan ◽  
Mamle Quarmyne ◽  
...  

Abstract Abstract 404 Several signaling pathways have been elucidated which regulate hematopoietic stem cell self-renewal, including the Notch, Wnt, HOX and BMP signaling pathways. However, several of these pathways (e.g. Notch, Wnt) may not be necessary for maintenance of HSCs in vivo. We recently demonstrated that treatment of murine and human HSCs with the heparin binding growth factor, pleiotrophin (PTN), was sufficient to induce self-renewal of murine and human HSCs in culture (Himburg, Nat Med, 2010). In order to determine if PTN signaling is necessary for HSC self renewal and normal hematopoiesis in vivo, we examined the bone marrow HSC content and hematopoietic profile of mice bearing a constitutive deletion of PTN (PTN−/− mice) as well as mice bearing constitutive deletion of the PTN receptor, receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ) (courtesy of Dr. Gonzalo Herradon, Spain and Dr. Sheila Harroch, L'Institut Pasteur, Paris, FR). PTN−/− mice demonstrated no significant differences in total bone marrow (BM) cells or BM colony forming cells (CFCs) but had significantly decreased bone marrow CD34(-)c-kit(+)sca-1(+)lin(-) (34-KSL) cells compared to littermate controls which retained PTN (PTN+/+) mice (0.007% vs. 0.02%, p=0.03). Consistent with this phenotype, PTN−/− mice also contained 2–fold decreased CFU-S12 compared to control PTN+/+ mice (p= 0.003). PTN−/− mice also demonstrated an 11-fold reduction in long-term repopulating HSC content compared to PTN+/+ mice as measured via competitive repopulating assay (12 week CRU frequency: 1 in 6 cells vs. 1 in 66 cells). Taken together, these data demonstrate that PTN signaling is necessary for maintenance of the BM HSC pool in vivo. Since PTN is known to antagonize the phosphatase activity of RPTPβ/ζ, we hypothesized that deletion of RPTPβ/ζ would increase BM HSC self-renewal and result in expansion of the BM HSC pool in vivo. Consistent with this hypothesis, RPTPβ/ζ−/− mice displayed a 1.3-fold increase in total BM cells (p= 0.04), 1.8-fold increase in BM 34-KSL cells (p=0.03), 1.6-fold increase in BM CFCs (p= 0.002) and 1.6–fold increase in BM CFU-S (p< 0.0001). RPTPβ/ζ−/− mice also demonstrated 1.4–fold higher long-term repopulating capacity (12 weeks) following competitive repopulating assay compared to RPTPβ/ζ+/+ mice (Donor CD45.1+ cell engraftment: 4.2% vs. 1.5%). Interestingly, RPTPβ/ζ −/− mice had significantly increased PB white blood cell counts, hemoglobin and platelet counts compared to RPTPβ/ζ+/+ mice coupled with splenomegaly. The RPTPβ/ζ−/− mice also had significantly increased BM vascular density (via quantitative mouse endothelial cell antigen staining) compared to RPTPβ/ζ+/+ mice, suggesting that PTN/RPTPβ/ζ signaling may augment the HSC pool size directly and also indirectly via activation of the BM vascular niche. These results demonstrate that PTN signaling is necessary and sufficient for induction of HSC self-renewal in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 396-396
Author(s):  
Stephane Barakat ◽  
Julie Lambert ◽  
Guy Sauvageau ◽  
Trang Hoang

Abstract Abstract 396 Hematopoietic stem cells that provide short term reconstitution (ST-HSCs) as well as hematopoietic progenitors expand from a small population of long term hematopoietic stem cells (LT-HSCs) that are mostly dormant cells. The mechanisms underlying this expansion remain to be clarified. SCL (stem cell leukemia), is a bHLH transcription factor that controls HSC quiescence and long term competence. Using a proteomics approach to identify components of the SCL complex in erythroid cells, we and others recently showed that the ETO2 co-repressor limits the activity of the SCL complex via direct interaction with the E2A transcription factor. ETO2/CBF2T3 is highly homologous to ETO/CBFA2T1 and both are translocation partners for AML1. We took several approaches to identify ETO2 function in HSCs. We initially found by Q-PCR that ETO2 is highly expressed in populations of cells enriched in short-term HSC (CD34+Flt3-Kit+Sca+Lin-) and lympho-myeloid progenitors (CD34+Flt3+Kit+Sca+Lin-) and at lower levels in LT-HSCs (CD34-Kit+Sca+Lin- or CD150+CD48-Kit+Sca+Lin-). Next, the role of ETO2 was studied by overexpression or downregulation combined with transplantation in mice. Ectopic ETO2 expression induces a 100 fold expansion of LT-HSCs in vivo in transplanted mice associated with differentiation blockade in all lineages, suggesting that ETO2 overexpression overcomes the mechanisms that limit HSC expansion in vivo. We are currently testing the role of the NHR1 domain of ETO2 in this expansion. Conversely, shRNAs directed against ETO2 knock down ET02 levels in Kit+Sca+Lin- cells, causing a ten-fold decrease in this population after transplantation, associated with reduced short-term reconstitution in mice. Finally, proliferation assays using Hoechst and CFSE indicate that ETO2 downregulation affects cell division (CFSE) and leads to an accumulation of Kit+Sca+Lin-cells in G0/G1 state (Hoescht). In conclusion, we show that ETO2 is highly expressed in ST-HSCs and lymphoid progenitors, and controls their expansion by regulating cell cycle entry at the G1-S checkpoint. In addition, ETO2 overexpression converts the self-renewal of maintenance into self-renewal of expansion in LT-HSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 385-385
Author(s):  
Sonia Cellot ◽  
Kristin J Hope ◽  
Martin Sauvageau ◽  
Jalila Chagraoui ◽  
Eric Deneault ◽  
...  

Abstract Abstract 385 Epigenetic modifications influence chromatin accessibility, impacting on cell fate decisions, such as stem cell self-renewal and differentiation, in both normal and leukemic stem cells (LSC). To investigate the putative role of histone demethylases (HDM) in modulating primary hematopoietic stem cell (HSC) fate, an in vivo functional screen was performed, using an RNAi based strategy, involving 25 members of the Jumonji (JmjC) domain protein family. As a first step, expression profile studies of these gene candidates were undertaken. Transcripts of all these enzymes were detected in isolated HSC populations (frequency 1:2) from fetal liver (n=1) and bone marrow (n=2), except for Hairless. As compared to unsorted bone marrow (BM), stem cells harboured higher expression of Jarid1b (relative-fold enrichment (RQ) of 3.9±1.7), Jmjd2d (RQ3.8±1.9), and Jhdm1b (3.1±1.7). Next, 5shRNA were designed against each of the 25 JmjC containing proteins, and cloned into a retroviral LMP vector encoding GFP to permit tracking of transduced cells in vivo. HSC-enriched CD150+CD48−Lin−cells (∼60 LT-HSC) were infected over 5 days by co-culture with retroviral producer cells in an arrayed 96-well format, with one shRNA per well. Directly after infection, the in vivo reconstituting potential of ¼ of each well was evaluated through duplicate competitive repopulation assays involving the co-transplantation of 1.5 × 105 congenic BM competitor cells into irradiated recipients. The remaining cell fraction served to asses gene transfer by GFP epifluorescence measurements, and RNA isolated from sorted GFP+ cells was used to evaluate gene knockdown levels by Q-RT-PCR analysis. Blood reconstitution was evaluated at an early (4wks) and late time point (16–20wks), tracking the contribution of the donor CD45.1+ transduced (GFP+) cells to recipient hematopoiesis over time. As baseline references, sh-RNA to Luciferase (no effect) and the histone acetyl transferase Myst3 (stem cell loss) were used, as well as Hoxb4 over-expression (stem cell expansion). The primary screen, followed by validation experiments, unravelled one positive (Jhdm1f/Phf8) and two negative (Jarid1b, Hif1an) regulators of HSC activity. The strongest impact was seen with Jarid1b knockdown, and the resulting gain in HSC activity. As a confirmation step, cells were kept in culture for one week, to better contrast an increase in HSC activity, compared to control HSC. After 7 days in vitro, 1/8 equivalents of single well cultures were transplanted into 3 mice, and blood reconstitution levels serially assessed. Cells transduced with sh-RNA against Jarid1b contributed more significantly to host hematopoiesis than sh-RNA Luciferase transduced cells (58±16% vs 26±3% GFP), or Hoxb4 over-expressing cells (37±2% GFP), at comparable gene transfer rates, at the 16 week time point and beyond (3 independent experiments). Long-term HSC frequencies were evaluated from these cultures, and found to be 6–10 fold increased in shJari1d1b-cell cultures. In long-term recipients, differentiation potential of these cells was preserved, as evidenced by CD4+CD8+ thymic cells, B220+ splenic cells and CD11b+ bone marrow cells in the GFP positive contingent. Clonality studies on DNA isolated from these sorted populations confirmed oligoclonality of the stem cell expansion, and HSC pluripotency. There were no cases of leukemic transformation in all of the transplant recipients (n>30). As assessed by Q-RT-PCR, levels of HoxA5, HoxA9, HoxA10 and CxCl5 were increased in day7 sh3Jarib1b-cells (vs ctl), while the levels of the tumor suppressors Cav1, Sash1 and Egr1 were decreased. A more detailed assessment of the HoxA cluster revealed predominant expression of 5' cluster genes in expanding shJarib1b-cells, from HoxA5 to HoxA11, with a concomitant increase in the level of H3K4 tri-methylation, as assessed by ChIP-CHIP. In conclusion, HDM of the JmjC family can modulate HSC activity, both positively and negatively. These data suggest that the H3K4 demethylase Jarid1b (KDM5b) restrains stem cell self-renewal, acting as a co-repressor, possibly via epigenetic regulation of the HoxA gene cluster, among other target genes. This observation could be further exploited as an HSC expansion strategy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document