Pain and immunity

Author(s):  
Simon Beggs

The central nervous system (CNS) and immune system are inextricably linked. The complexity of their interactions is still being unraveled, but the list of processes mediated wholly or in part by neuroimmune interactions continues to grow. The influence of the immune system is crucial for normal nervous system development both pre- and postnatally, for maintaining neuronal homeostasis in the mature CNS and modulating synaptic plasticity. Aberrations in this crosstalk have been implicated in many neurodevelopmental and psychiatric disorders. It is not feasible to explore neuronal function at any point in the lifespan, in health or disease, without considering the influence of the immune system. In the adult animal it is now well established that pain chronicity is maintained by immune influence upon the neuronal nociceptive system, although, fascinatingly, there is now evidence for a marked sexual dimorphism in how the immune and nervous systems interact. This holds true for pain in early life, where the two still-developing systems provide a very different environment to mediate nociception and pain. Of particular interest is how the immune system and sex interact to early life painful events to prime pain responses in later life.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


2021 ◽  
Vol 22 (15) ◽  
pp. 8344
Author(s):  
Miguel E. Domínguez-Romero ◽  
Paula G. Slater

During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 592
Author(s):  
Clare Hudson ◽  
Hitoyoshi Yasuo

Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.


Sign in / Sign up

Export Citation Format

Share Document