Diving medicine

2010 ◽  
pp. 1416-1422
Author(s):  
D.M. Denison ◽  
M.A. Glover

Diving remains the principal means of exploring and exploiting shallower underwater zones. Immersion and rapid increase in pressure with depth cause most problems unique to diving. Gas density, partial pressures, and solubility vary proportionately with ambient pressure. At elevated partial pressure, nitrogen becomes narcotic, as can other inert gases, and contaminants barely detectable at the surface can become toxic as their partial pressures rise with depth. Hyperoxia irritates the lungs and the central nervous system, and sometimes causing generalized seizures. A safe gas mixture at depth can become hypoxic as the partial pressure of oxygen decreases during the return to surface....

2020 ◽  
pp. 1664-1671
Author(s):  
David M. Denison ◽  
Mark A. Glover

Diving remains the principal means of exploring and exploiting shallower underwater zones. Immersion and rapid change in pressure with depth cause most problems unique to diving. Gas density, partial pressures, and solubility vary proportionately with ambient pressure. At elevated partial pressure, nitrogen becomes narcotic, as can other inert gases, and contaminants barely detectable at the surface can become toxic. Hyperoxia irritates the lungs and the central nervous system, sometimes causing generalized seizures. A safe gas mixture at depth can become hypoxic as the partial pressure of oxygen decreases during the return to surface. Ventilation is compromised at depth and failure of CO2 elimination increasingly limits activity. Some divers are not distressed by elevated CO2, but this does not protect them from its toxic effects.


2003 ◽  
Vol 95 (3) ◽  
pp. 883-909 ◽  
Author(s):  
Jay B. Dean ◽  
Daniel K. Mulkey ◽  
Alfredo J. Garcia ◽  
Robert W. Putnam ◽  
Richard A. Henderson

As ambient pressure increases, hydrostatic compression of the central nervous system, combined with increasing levels of inspired Po2, Pco2, and N2partial pressure, has deleterious effects on neuronal function, resulting in O2toxicity, CO2toxicity, N2narcosis, and high-pressure nervous syndrome. The cellular mechanisms responsible for each disorder have been difficult to study by using classic in vitro electrophysiological methods, due to the physical barrier imposed by the sealed pressure chamber and mechanical disturbances during tissue compression. Improved chamber designs and methods have made such experiments feasible in mammalian neurons, especially at ambient pressures <5 atmospheres absolute (ATA). Here we summarize these methods, the physiologically relevant test pressures, potential research applications, and results of previous research, focusing on the significance of electrophysiological studies at <5 ATA. Intracellular recordings and tissue Po2measurements in slices of rat brain demonstrate how to differentiate the neuronal effects of increased gas pressures from pressure per se. Examples also highlight the use of hyperoxia (≤3 ATA O2) as a model for studying the cellular mechanisms of oxidative stress in the mammalian central nervous system.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document