The use of TENS for non-painful conditions

Peripheral nerves consist of afferent and efferent neurones with different functions. TENS can be used to excite somatic efferents to influence the activity of skeletal muscle, and autonomic efferents to influence the activity of smooth muscle, cardiac muscle, and glands. There are physiological rationale to support the use of TENS to manage various non-painful conditions. Clinical experience suggests TENS is often beneficial. The purpose of this chapter is to describe the mechanism of action, clinical use and clinical efficacy for TENS when used to manage non-painful conditions. The chapter covers the effects of TENS on the autonomic nervous system, circulatory system, tissue regeneration, and psychomotor conditions. It also considers the use of TENS for incontinence, constipation, ileus and gastrointestinal discomfort, post-surgical symptoms, and antiemesis.

1935 ◽  
Vol 31 (7) ◽  
pp. 909-909
Author(s):  
F. Plaut

The author showed that the sera obtained by immunizing rabbits with a suspension of n. sympathicus and n. vagus, do not show specific properties when tested with alcoholic extracts from the same nerves; these serums have only the properties of ordinary neuroanti-serums.


2001 ◽  
Vol 125 (2) ◽  
pp. 264-266
Author(s):  
Satish Krishnamurthy ◽  
Stephen Kent Powers ◽  
Javad Towfighi

Abstract Primitive neuroectodermal tumors (PNETs) of the central nervous system are uncommon embryonal neoplasms, rarely occurring in adults. Differentiation into specific mesenchymal tissues, such as cartilage, bone, skeletal muscle, smooth muscle, or adipose tissue, is rare. We report a case of a 51-year-old woman with a PNET of cerebrum that showed extensive mature adipose tissue differentiation. This is the second case, to our knowledge, of PNET of cerebrum with adipose tissue elements that has been described.


Author(s):  
T.C. Steven Keller ◽  
Christophe Lechauve ◽  
Alexander S Keller ◽  
Steven Brooks ◽  
Mitchell J Weiss ◽  
...  

Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system. The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extra-erythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in non-vascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the central and peripheral nervous systems. Brain and central nervous system neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and, thus, tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme-iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scaveging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology with a focus on NO biology, and offer perspectives for future study of these functions.


Cell ◽  
1994 ◽  
Vol 76 (1) ◽  
pp. 117-129 ◽  
Author(s):  
David Westaway ◽  
Stephen J. DeArmond ◽  
Juliana Cayetano-Canlas ◽  
Darlene Groth ◽  
Dallas Foster ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Brendan J. Canning ◽  
Ariel Woo ◽  
Stuart B. Mazzone

The autonomic nervous system provides both cholinergic and noncholinergic neural inputs to end organs within the airways, which includes the airway and vascular smooth muscle. Heightened responsiveness of the airways to bronchoconstrictive agents is a hallmark feature of reactive airways diseases. The mechanisms underpinning airways hyperreactivity still largely remain unresolved. In this paper we summarize the substantial body of evidence that implicates dysfunction of the autonomic nerves that innervate smooth muscle in the airways and associated vasculature as a prominent cause of airways hyperresponsiveness in asthma.


2016 ◽  
Vol 60 (2) ◽  
pp. 5-10
Author(s):  
E. Marettová

Abstract The perineurium constitutes the basis for the regulation of endoneurial fluid homeostasis. In the work presented here, cytokeratin 18, as an immunohistochemical marker for epithelial cells, was used to identify the perineurium in the peripheral nerves of two species. Two organs, rich in peripheral nerves, were used; the tongue of the bull and the ductus deferens of the male goat. Special attention was paid to one of the the nerve sheath cells - the perineurial cells of myelinated nerves in the skeletal muscle of the tongue and in the smooth muscle in the wall of the ductus deferens. A positive reaction to cytokeratin 18 was found in the perineurial cells of the perineurial sheath in the nerves of various sizes. No difference in the reactivity was observed between the peripheral nerves of the tongue and that of the ductus deferens.


2012 ◽  
Vol 25 (3) ◽  
pp. 403-413 ◽  
Author(s):  
Adriano Bento-Santos ◽  
Leonardo dos Reis Silveira ◽  
Raul Manhães-de-Castro ◽  
Carol Gois Leandro

A deficiência de nutrientes durante os períodos críticos do desenvolvimento tem sido associada com maior risco para desenvolver obesidade e diabetes Mellitus na vida adulta. Um dos mecanismos propostos refere-se à regulação do comportamento alimentar e às alterações do metabolismo energético do músculo esquelético. Recentemente, tem sido proposta a existência de uma comunicação entre o hipotálamo e o músculo esquelético a partir de sinais autonômicos que podem explicar as repercussões da desnutrição perinatal. Assim, esta revisão tem como objetivo discutir as repercussões da desnutrição perinatal sobre o comportamento alimentar e o metabolismo energético muscular e a comunicação existente entre o hipotálamo e o músculo via sinais adrenérgicos. Foram utilizadas as bases de dados MedLine/PubMed, Lilacs e Bireme, com publicações entre 2000 e 2011. Os termos de indexação utilizados foram: feeding behavior, energy metabolism, protein malnutrition, developmental plasticity, skeletal muscle e autonomic nervous system. Concluiu-se que a desnutrição perinatal pode atuar no controle hipotalâmico do comportamento alimentar e no metabolismo energético muscular, e a comunicação hipotálamo-músculo pode favorecer o desenvolvimento de obesidade e comorbidades durante o desenvolvimento.


Sign in / Sign up

Export Citation Format

Share Document