Repetitive Low-level Blast Exposure and Neurocognitive Effects in Army Ranger Mortarmen

2021 ◽  
Author(s):  
Julia l.a Woodall ◽  
Jordyn a Sak ◽  
Kyle R Cowdrick ◽  
Brady m Bove Muñoz ◽  
Jessica h McElrath ◽  
...  

ABSTRACT Introduction Occupational exposure to repetitive, low-level blasts in military training and combat has been tied to subconcussive injury and poor health outcomes for service members. Most low-level blast studies to date have focused on explosive breaching and firing heavy weapon systems; however, there is limited research on the repetitive blast exposure and physiological effects that mortarmen experience when firing mortar weapon systems. Motivated by anecdotal symptoms of mortarmen, the purpose of this paper is to characterize this exposure and its resulting neurocognitive effects in order to provide preliminary findings and actionable recommendations to safeguard the health of mortarmen. Materials and Methods In collaboration with the U.S. Army Rangers at Fort Benning, blast exposure, symptoms, and pupillary light reflex were measured during 3 days of firing 81 mm and 120 mm mortars in training. Blast exposure analysis included the examination of the blast overpressure (BOP) and cumulative exposure by mortarman position, as well as comparison to the 4 psi safety threshold. Pupillary light reflex responses were analyzed with linear mixed effects modeling. All neurocognitive results were compared between mortarmen (n = 11) and controls (n = 4) and cross-compared with blast exposure and blast history. Results Nearly 500 rounds were fired during the study, resulting in a high cumulative blast exposure for all mortarmen. While two mortarmen had average BOPs exceeding the 4 psi safety limit (Fig. 2), there was a high prevalence of mTBI-like symptoms among all mortarmen, with over 70% experiencing headaches, ringing in the ears, forgetfulness/poor memory, and taking longer to think during the training week (n ≥ 8/11). Mortarmen also had smaller and slower pupillary light reflex responses relative to controls, with significantly slower dilation velocity (P < 0.05) and constriction velocity (P < 0.10). Conclusion Mortarmen experienced high cumulative blast exposure coinciding with altered neurocognition that is suggestive of blast-related subconcussive injury. These neurocognitive effects occurred even in mortarmen with average BOP below the 4 psi safety threshold. While this study was limited by a small sample size, its results demonstrate a concerning health risk for mortarmen that requires additional study and immediate action. Behavioral changes like ducking and standing farther from the mortar when firing can generally help reduce mortarmen BOP exposure, but we recommend the establishment of daily cumulative safety thresholds and daily firing limits in training to reduce cumulative blast exposure, and ultimately, improve mortarmen’s quality of life and longevity in service.

2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 529-536
Author(s):  
Andrzej Przekwas ◽  
Harsha T Garimella ◽  
Z J Chen ◽  
Tim Zehnbauer ◽  
Raj K Gupta ◽  
...  

ABSTRACT Introduction During training and combat operations, military personnel may be exposed to repetitive low-level blast while using explosives to gain entry or by firing heavy weapon systems such as recoilless weapons and high-caliber sniper rifles. This repeated exposure, even within allowable limits, has been associated with cognitive deficits similar to that of accidental and sports concussion such as delayed verbal memory, visual-spatial memory, and executive function. This article presents a novel framework for accurate calculation of the human body blast exposure in military heavy weapon training scenarios using data from the free-field and warfighter wearable pressure sensors. Materials and Methods The CoBi human body model generator tools were used to reconstruct multiple training scenes with different weapon systems. The CoBi Blast tools were used to develop the weapon signature and estimate blast overpressure exposure. The authors have used data from the free-field and wearable pressure sensors to evaluate the framework. Results Carl-Gustav and 0.50 caliber sniper training scenarios were used to demonstrate and validate the developed framework. These simulations can calculate spatially and temporally resolved blast loads on the whole human body and on specific organs vulnerable to blast loads, such as head, face, and lungs. Conclusions This framework has numerous advantages including easier model setup and shorter simulation times. The framework is an important step towards developing an advanced field-applicable technology to monitor low-level blast exposure during heavy weapon military training and combat scenarios.


2015 ◽  
Vol 6 ◽  
Author(s):  
Shakoor Ba-Ali ◽  
Birgit Sander ◽  
Adam Elias Brøndsted ◽  
Henrik Lund-Andersen

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162476 ◽  
Author(s):  
Maria Angeles Bonmati-Carrion ◽  
Konstanze Hild ◽  
Cheryl Isherwood ◽  
Stephen J. Sweeney ◽  
Victoria L. Revell ◽  
...  

2017 ◽  
pp. S277-S284 ◽  
Author(s):  
A. MESTANIKOVA ◽  
I. ONDREJKA ◽  
M. MESTANIK ◽  
D. CESNEKOVA ◽  
Z. VISNOVCOVA ◽  
...  

Major depressive disorder is associated with abnormal autonomic regulation which could be noninvasively studied using pupillometry. However, the studies in adolescent patients are rare. Therefore, we aimed to study the pupillary light reflex (PLR), which could provide novel important information about dynamic balance between sympathetic and parasympathetic nervous system in adolescent patients suffering from major depression. We have examined 25 depressive adolescent girls (age 15.2±0.3 year) prior to pharmacotherapy and 25 age/gender-matched healthy subjects. PLR parameters were measured separately for both eyes after 5 min of rest using Pupillometer PLR-2000 (NeurOptics, USA). The constriction percentual change for the left eye was significantly lower in depressive group compared to control group (-24.12±0.87 % vs. –28.04±0.96%, p˂0.01). Furthermore, average constriction velocity and maximum constriction velocity for the left eye were significantly lower in depressive group compared to control group (p˂0.05, p˂0.01, respectively). In contrast, no significant between-groups differences were found for the right eye. Concluding, this study revealed altered PLR for left eye indicating a deficient parasympathetic activity already in adolescent major depression. Additionally, the differences between left and right eye could be related to functional lateralization of autonomic control in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document