scholarly journals A broad-band look of the accreting millisecond X-ray pulsar SAX J1748.9−2021 using AstroSat and XMM–Newton

2020 ◽  
Vol 492 (3) ◽  
pp. 4361-4368 ◽  
Author(s):  
Rahul Sharma ◽  
Aru Beri ◽  
Andrea Sanna ◽  
Anjan Dutta

ABSTRACT SAX J1748.9−2021 is a transient accretion powered millisecond X-ray pulsar located in the globular cluster NGC 6440. We report on the spectral and timing analysis of SAX J1748.9−2021 performed on AstroSat data taken during its faint and short outburst of 2017. We derived the best-fitting orbital solution for the 2017 outburst and obtained an average local spin frequency of 442.361098(3) Hz. The pulse profile obtained from 3 to 7 and 7 to 20 keV energy bands suggest constant fractional amplitude ∼0.5 per cent for fundamental component, contrary to previously observed energy pulse profile dependence. Our AstroSat observations revealed the source to be in a hard spectral state. The 1–50 keV spectrum from SXT (Soft X-ray Telescope) and LAXPC (Large Area X-ray Proportional Counter) on-board AstroSat can be well described with a single temperature blackbody and thermal Comptonization. Moreover, we found that the combined spectra from XMM–Newton (EPIC-PN) and AstroSat (SXT + LAXPC) indicated the presence of reflection features in the form of iron (Fe Kα) line that we modelled with the reflection model xillvercp. One of the two X-ray burst observed during the AstroSat/LAXPC observation showed hard X-ray emission (>30 keV) due to Compton up-scattering of thermal photons by the hot corona. Time-resolved analysis performed on the bursts revealed complex evolution in emission radius of blackbody for second burst suggestive of mild photospheric radius expansion.

2019 ◽  
Vol 486 (2) ◽  
pp. 2964-2975 ◽  
Author(s):  
Bari Maqbool ◽  
Sneha Prakash Mudambi ◽  
R Misra ◽  
J S Yadav ◽  
S B Gudennavar ◽  
...  

Abstract We report the results from analysis of six observations of Cygnus X-1 by Large Area X-ray Proportional Counter (LAXPC) and Soft X-ray Telescope (SXT) onboard AstroSat, when the source was in the hard spectral state as revealed by the broad-band spectra. The spectra obtained from all the observations can be described by a single-temperature Comptonizing region with disc and reflection components. The event mode data from LAXPC provides unprecedented energy dependent fractional root mean square (rms) and time-lag at different frequencies which we fit with empirical functions. We invoke a fluctuation propagation model for a simple geometry of a truncated disc with a hot inner region. Unlike other propagation models, the hard X-ray emission (>4 keV) is assumed to be from the hot inner disc by a single-temperature thermal Comptonization process. The fluctuations first cause a variation in the temperature of the truncated disc and then the temperature of the inner disc after a frequency dependent time delay. We find that the model can explain the energy dependent rms and time-lag at different frequencies.


2020 ◽  
Vol 495 (3) ◽  
pp. 2664-2672 ◽  
Author(s):  
Amar Deo Chandra ◽  
Jayashree Roy ◽  
P C Agrawal ◽  
Manojendu Choudhury

ABSTRACT We present the timing and spectral studies of RX J0209.6–7427 during its rare 2019 outburst using observations with the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) instruments on the AstroSat satellite. Pulsations having a periodicity of 9.29 s were detected for the first time by the NICER mission in the 0.2–10 keV energy band and, as reported here, by AstroSat over a broad energy band covering 0.3–80 keV. The pulsar exhibits a rapid spin-up during the outburst. Energy resolved folded pulse profiles are generated in several energy bands in 3–80 keV. To the best of our knowledge this is the first report of the timing and spectral characteristics of this Be binary pulsar in hard X-rays. There is suggestion of evolution of the pulse profile with energy. The energy spectrum of the pulsar is determined and from the best-fitting spectral values, the X-ray luminosity of RX J0209.6−7427 is inferred to be 1.6 × 1039 erg s−1. Our timing and spectral studies suggest that this source has features of an ultraluminous X-ray pulsar in the Magellanic Bridge. Details of the results are presented and discussed in terms of the current ideas.


2019 ◽  
Vol 487 (4) ◽  
pp. 5441-5449
Author(s):  
Aditya S Mondal ◽  
G C Dewangan ◽  
B Raychaudhuri

ABSTRACT We report on the NuSTAR observation of the atoll type neutron star (NS) low-mass X-ray binary GX 3 + 1 performed on 2017 October 17. The source was found in a soft X-ray spectral state with 3–70 keV luminosity of LX ∼ 3 × 1037 erg s−1 (${\sim } 16{{\ \rm per\ cent}}$ of the Eddington luminosity), assuming a distance of 6 kpc. A positive correlation between intensity and hardness ratio suggests that the source was in the banana branch during this observation. The broad-band 3–70 keV NuSTAR spectral data can be described by a two-component continuum model consisting of a disc blackbody (kTdisc ∼ 1.8 keV) and a single temperature blackbody model (kTbb ∼ 2.7 keV). The spectrum shows a clear and robust indication of relativistic reflection from the inner disc which is modelled with a self-consistent relativistic reflection model. The accretion disc is viewed at an inclination of i ≃ 22°–26° and extended close to the NS, down to $R_\text{in}=(1.2\!-\!1.8) R_\text{ISCO}\:(\simeq 6.1\!-\!9.1\, R_{\mathrm{ g}}\: \text{or}\: 14\!-\!20.5$ km) which allows an upper limit on the NS radius (≤13.5 km). Based on the measured flux and the mass accretion rate, the maximum radial extension for the boundary layer is estimated to be ∼6.3 Rg from the NS surface. However, if the disc is not truncated by the boundary layer but by the magnetosphere, an estimated upper limit on the polar magnetic field would be of B ≤ 6 × 108 G.


2020 ◽  
Vol 494 (3) ◽  
pp. 3177-3185
Author(s):  
Aditya S Mondal ◽  
G C Dewangan ◽  
B Raychaudhuri

ABSTRACT We present NuSTAR observation of the atoll type neutron star (NS) low-mass X-ray binary (LMXB) Serpens X-1 (Ser X-1) performed on 2018 February 17. We observed Ser X-1 in a soft X-ray spectral state with 3–79 keV luminosity of LX ∼ 0.4 × 1038 erg s−1 (${\sim}23{{\ \rm per\ cent}}$ of the Eddington luminosity), assuming a distance of 7.7 kpc. A positive correlation between intensity and hardness ratio suggests that the source was in the banana branch during this observation. The broad-band 3–30 keV NuSTAR energy spectrum can be well described either by a three-component continuum model consisting of a disc blackbody, a single temperature blackbody, and a power law or by a two-component continuum model consisting of a disc blackbody and a Comptonization component. A broad iron line ∼5–8 keV and the Compton back-scattering hump peaking at ∼10–20 keV band are clearly detected in the X-ray spectrum. These features are best interpreted by a self-consistent relativistic reflection model. Fits with relativistically blurred disc reflection model suggests that the inner disc radius Rin is truncated prior to the ISCO at (1.9–2.5) RISCO (${\simeq}11.4\!-\!15\, R_{g}\: \text{or}\: 26\!-\!34$ km) and the accretion disc is viewed at a low inclination of i ≃ 16°−20°. The disc is likely to be truncated either by a boundary layer or by the magnetosphere. Based on the measured flux and the mass accretion rate, the maximum radial extension for the boundary layer is estimated to be ∼6.4 Rg from the NS surface. The truncated inner disc in association with pressure from a magnetic field sets an upper limit of B ≤ 1.9 × 109 G.


2020 ◽  
Vol 497 (4) ◽  
pp. 4213-4221
Author(s):  
Ritesh Ghosh ◽  
Sibasish Laha

ABSTRACT We have extensively studied the broad--band X-ray spectra of the source ESO 141–G055 using all available XMM–Newton and NuSTAR observations. We detect a prominent soft excess below $2\rm \, \, {\rm keV}$, a narrow Fe line, and a Compton hump ($\gt 10\rm \, \, {\rm keV}$). The origin of the soft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disc and the intrinsic thermal Comptonization model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a > 0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $\lambda _{\rm \, Edd}\sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K α and the Compton hump has a column density of $N_{\rm H} \ge 7\times 10^{24} \, \rm cm^{-2}$. In addition, we detect a partially covering ionized absorption with ionization parameter $\log \xi /\rm \, erg\, cm\, s^{-1}$  = $0.1^{+0.1}_{-0.1}$ and column density $N_{\rm H} =20.6^{+1.0}_{-1.0}\times 10^{22} \, \rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.


2019 ◽  
Vol 491 (4) ◽  
pp. 5172-5178 ◽  
Author(s):  
E Kara ◽  
C Pinto ◽  
D J Walton ◽  
W N Alston ◽  
M Bachetti ◽  
...  

ABSTRACT Ultraluminous X-ray sources (ULXs) provide a unique opportunity to probe the geometry and energetics of super-Eddington accretion. The radiative processes involved in super-Eddington accretion are not well understood, and so studying correlated variability between different energy bands can provide insights into the causal connection between different emitting regions. We present a spectral-timing analysis of NGC 1313 X-1 from a recent XMM–Newton campaign. The spectra can be decomposed into two thermal-like components, the hotter of which may originate from the inner accretion disc, and the cooler from an optically thick outflow. We find correlated variability between hard (2–10 keV) and soft (0.3–2 keV) bands on kilosecond time-scales, and find a soft lag of ∼150 s. The covariance spectrum suggests that emission contributing to the lags is largely associated with the hotter of the two thermal-like components, likely originating from the inner accretion flow. This is only the third ULX to exhibit soft lags. The lags range over three orders of magnitude in amplitude, but all three are ∼5–20 per cent of the corresponding characteristic variability time-scales. If these soft lags can be understood in the context of a unified picture of ULXs, then lag time-scales may provide constraints on the density and extent of radiatively driven outflows.


2020 ◽  
Vol 498 (4) ◽  
pp. 5873-5884
Author(s):  
Sudip Chakraborty ◽  
Nilam Navale ◽  
Ajay Ratheesh ◽  
Sudip Bhattacharyya

ABSTRACT MAXI J1820+070 is a newly discovered transient black hole X-ray binary, which showed several spectral and temporal features. In this work, we analyse the broad-band X-ray spectra from all three simultaneously observing X-ray instruments onboard AstroSat, as well as contemporaneous X-ray spectra from NuSTAR, observed during the hard state of MAXI J1820+070 in 2018 March. Implementing a combination of multicolour disc model, relativistic blurred reflection model relxilllpcp, and a distant reflection in the form of xillvercp, we achieve reasonable and consistent fits for AstroSat and NuSTAR spectra. The best-fitting model suggests a low temperature disc (kTin ∼ 0.3 keV), iron overabundance (AFe ∼ 4–5 solar), a short lamp-post corona height (h ≲ 8Rg), and a high corona temperature (kTe ∼ 115–150 keV). Addition of a second Comptonization component leads to a significantly better fit, with the kTe of the second Comptonization component being ∼14–18 keV. Our results from independent observations with two different satellites in a similar source state indicate an inhomogeneous corona, with decreasing temperature attributed to increasing height. Besides, utilizing the broader energy coverage of AstroSat, we estimate the black hole mass to be 6.7–13.9 M⊙, consistent with independent measurements reported in the literature.


2020 ◽  
Vol 495 (2) ◽  
pp. 1641-1649
Author(s):  
A Sanna ◽  
L Burderi ◽  
K C Gendreau ◽  
T Di Salvo ◽  
P S Ray ◽  
...  

ABSTRACT We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591–2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 17. We obtain an updated orbital solution of the binary system. We investigate the evolution of the neutron star spin frequency during the outburst, reporting a refined estimate of the spin frequency and the first estimate of the spin frequency derivative ($\dot{\nu }\sim -7\times 10^{-14}$ Hz s−1), confirmed independently from the modelling of the fundamental frequency and its first harmonic. We further investigate the evolution of the X-ray pulse phases adopting a physical model that accounts for the accretion material torque as well as the magnetic threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. From this analysis we estimate the neutron star magnetic field Beq = 2.8(3) × 108 G. Finally, we investigate the pulse profile dependence on energy finding that the observed behaviour of the pulse fractional amplitude and lags as a function of energy is compatible with the down-scattering of hard X-ray photons in the disc or the neutron star surface.


2013 ◽  
Vol 9 (S304) ◽  
pp. 125-131
Author(s):  
Yoshihiro Ueda ◽  
Masayuki Akiyama ◽  
Günther Hasinger ◽  
Takamitsu Miyaji ◽  
Michael G. Watson

AbstractX-ray surveys provide us with one of the least biased samples of Active Galactic Nuclei (AGNs) against obscuration. Here we present the most up-to-date AGN X-ray luminosity function (XLF) and absorption function over the redshift range from 0 to 5, using the largest, highly complete sample ever available obtained from surveys of various depth, depth, and energy bands. We utilize a maximum likelihood method to reproduce the count-rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, contribution from Compton-thick AGNs, and AGN broad band X-ray spectra including reflection components from tori based on the luminosity and redshift dependent unified scheme. We find that the shape of the XLF at z ~ 1–3 is significantly different from that in the local universe, for which the luminosity dependent density evolution (LDDE) model gives the best description. These results establish the standard population synthesis model of the X-Ray Background (XRB), which well reproduces the source counts in both soft and hard bands, the observed fractions of Compton-thick AGNs, and the spectrum of the XRB.


10.14311/1326 ◽  
2011 ◽  
Vol 51 (1) ◽  
Author(s):  
I. Kreykenbohm ◽  
F. Fürst ◽  
L. Barrágan ◽  
J. Wilms ◽  
R. E. Rothschild ◽  
...  

We present a detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U1909+07 is a persistent accreting X-ray pulsar with a period of approximately 605 s. The period changes erratically consistent with a random walk expected for a wind accreting system. INTEGRAL detects the source with an average of 2.4 cps (corresponding to 15mCrab), but sometimes exhibits flaring activity up to 50 cps (i.e. 300mCrab). The strongly energy dependent pulse profile shows a double peaked structure at low energies and only a single narrow peak at energies above 20 keV. The phase averaged spectrum is well described by a powerlaw modified at higher energies by an exponential cutoff and photoelectric absorption at low energies. In addition at 6.4 keV a strong iron fluorescence line and at lower energies a blackbody component are present. We performed phase resolved spectroscopy to study the pulse phase dependence of the spectral parameters: while most spectral parameters are constant within uncertainties, the blackbody normalization and the cutoff folding energy vary strongly with phase.


Sign in / Sign up

Export Citation Format

Share Document