scholarly journals Heavy element evolution in the inner regions of the Milky Way

2020 ◽  
Vol 494 (4) ◽  
pp. 5534-5541 ◽  
Author(s):  
F Matteucci ◽  
A Vasini ◽  
V Grisoni ◽  
M Schultheis

ABSTRACT We present results for the evolution of the abundances of heavy elements (O, Mg, Al, Si, K, Ca, Cr, Mn, Ni, and Fe) in the inner Galactic regions (RGC ≤ 4 kpc). We adopt a detailed chemical evolution model already tested for the Galactic bulge and compare the results with Apache Point Observatory Galactic Evolution Experiment data. We start with a set of yields from the literature that are considered the best to reproduce the abundance patterns in the solar vicinity. We find that, in general, the predicted trends nicely reproduce the data but in some cases either the trend or the absolute values of the predicted abundances need to be corrected, even by large factors, in order to reach the best agreement. We suggest how the current stellar yields should be modified to reproduce the data and we discuss whether such corrections are reasonable in the light of the current knowledge of stellar nucleosynthesis. However, we also critically discuss the observations. Our results suggest that Si, Ca, Cr, and Ni are the elements for which the required corrections are the smallest, while for Mg and Al moderate modifications are necessary. On the other hand, O and K need the largest corrections to reproduce the observed patterns, a conclusion already reached for solar vicinity abundance patterns, with the exception of oxygen. For Mn, we apply corrections already suggested in previous works.

2021 ◽  
Vol 503 (3) ◽  
pp. 3216-3231
Author(s):  
Marco Palla

ABSTRACT We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding to different white dwarf progenitors (near-Chandrasekar and sub-Chandrasekar) taken from the literature. We adopt a fixed delay time distribution function for Type Ia SNe, in order to avoid degeneracies in the analysis of the different nucleosynthesis channels. We also combine yields for different Type Ia SN progenitors in order to test the contribution to chemical evolution of different Type Ia SN channels. The results of the models are compared with recent LTE and NLTE observational data. We find that ‘classical’ W7 and WDD2 models produce Fe masses and [α/Fe] abundance patterns similar to more recent and physical near-Chandrasekar and sub-Chandrasekar models. For Fe-peak elements, we find that the results strongly depend either on the white dwarf explosion mechanism (deflagration-to-detonation, pure deflagration, double detonation) or on the initial white dwarf conditions (central density, explosion pattern). The comparison of chemical evolution model results with observations suggests that a combination of near-Chandrasekar and sub-Chandrasekar yields is necessary to reproduce the data of V, Cr, Mn and Ni, with different fractions depending on the adopted massive stars stellar yields. This comparison also suggests that NLTE and singly ionized abundances should be definitely preferred when dealing with most of Fe-peak elements at low metallicity.


1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


2016 ◽  
Vol 11 (S321) ◽  
pp. 50-50
Author(s):  
Daisuke Toyouchi ◽  
Masashi Chiba

AbstractWe investigate the structure and dynamics of the Milky Way (MW) disk stars based on the analysis of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, to infer the past evolution histories of the MW disk component(s) possibly affected by radial migration and/or satellite accretions. APOGEE is the first near-infrared spectroscopic survey for a large number of the MW disk stars, providing their radial velocities and chemical abundances without significant dust extinction effects. We here adopt red-clump (RC) stars (Bovy et al. 2014), for which the distances from the Sun are determined precisely, and analyze their radial velocities and chemical abundances in the MW disk regions covering from the Galactocentric distance, R, of 5 kpc to 14 kpc. We investigate their dynamical properties, such as mean rotational velocities, 〈Vφ〉 and velocity dispersions, as a function of R, based on the MCMC Bayesian method. We find that at all radii, the dynamics of alpha-poor stars, which are candidates of young disk stars, is much different from that of alpha-rich stars, which are candidates of old disk stars. We find that our Jeans analysis for our sample stars reveals characteristic spatial and dynamical properties of the MW disk, which are generally in agreement with the recent independent work by Bovy et al. (2015) but with a different method from ours.


2016 ◽  
Vol 11 (S321) ◽  
pp. 10-12
Author(s):  
Charli M. Sakari

AbstractObservations of stellar streams in M31’s outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)—this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17’s high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.


Author(s):  
Ö. Önal Taş ◽  
S. Bilir ◽  
G. M. Seabroke ◽  
S. Karaali ◽  
S. Ak ◽  
...  

AbstractWe investigate the Milky Way Galaxy’s radial and vertical metallicity gradients using a sample of 47 406 red clump stars from the RAdial Velocity Experiment Data Release 4. Distances are calculated by adopting Ks-band absolute magnitude as −1.54±0.04 mag for the sample. The metallicity gradients are calculated with their current orbital positions (Rgc and Z) and with their orbital properties (Rm and zmax): d[Fe/H]/dRgc = −0.047±0.003 dex kpc−1 for |Z| ≤ 0.5 kpc and d[Fe/H]/dRm = −0.025±0.002 dex kpc−1 for zmax ≤ 0.5 kpc. This reaffirms the radial metallicity gradient in the thin disc but highlights that gradients are sensitive to the selection effects caused by the difference between Rgc and Rm. The radial gradient is flat in the distance interval 0.5-1 kpc from the plane and then becomes positive greater than 1 kpc from the plane. The radial metallicity gradients are also eccentricity dependent. We showed that d[Fe/H]/dRm = −0.089±0.010, −0.073±0.007, −0.053±0.004 and −0.044±0.002 dex kpc−1 for ep ≤ 0.05, ep ≤ 0.07, ep ≤ 0.10 and ep ≤ 0.20 sub-samples, respectively, in the distance interval zmax ≤ 0.5 kpc. Similar trend is found for vertical metallicity gradients. Both the radial and vertical metallicity gradients are found to become shallower as the eccentricity of the sample increases. These findings can be used to constrain different formation scenarios of the thick and thin discs.


2019 ◽  
Vol 14 (S351) ◽  
pp. 317-320
Author(s):  
Søren S. Larsen

AbstractThis contribution gives an update on on-going efforts to characterise the detailed chemical abundances of Local Group globular clusters (GCs) from integrated-light spectroscopy. Observations of a sample of 20 GCs so far, located primarily within dwarf galaxies, show that at low metallicities the [α/Fe] ratios are generally indistinguishable from those in Milky Way GCs. However, the “knee” above which [α/Fe] decreases towards Solar-scaled values occurs at lower metallicities in the dwarfs, implying that GCs follow the same trends seen in field stars. Efforts are underway to establish NLTE corrections for integrated-light abundance measurements, and preliminary results for Mn are discussed.


1991 ◽  
Vol 145 ◽  
pp. 13-19
Author(s):  
James W. Truran

Recent spectroscopic studies of the elemental abundance patterns associated with extremely metal deficient field halo stars and globular cluster stars are briefly reviewed. These metal deficient stellar populations have been found to be characterized by abundance patterns which differ quite distinctly from those of solar system abundances, but are consistent with the view that they reflect primarily the nucleosynthesis products of the evolution of massive stars and associated Type II supernovae. Guided by our current knowledge of nucleosynthesis as a function of stellar mass occurring in stars and supernovae, we identify some interesting constraints upon theories of the formation and early history of our Galaxy.


2019 ◽  
Vol 14 (S351) ◽  
pp. 155-160
Author(s):  
Charli M. Sakari

AbstractIntegrated light (IL) spectroscopy enables studies of stellar populations beyond the Milky Way and its nearest satellites. In this paper, I will review how IL spectroscopy reveals essential information about globular clusters and the assembly histories of their host galaxies, concentrating particularly on the metallicities and detailed chemical abundances of the GCs in M31. I will also briefly mention the effects of multiple populations on IL spectra, and how observations of distant globular clusters help constrain the source(s) of light-element abundance variations. I will end with future perspectives, emphasizing how IL spectroscopy can bridge the gap between Galactic and extragalactic astronomy.


1999 ◽  
Vol 190 ◽  
pp. 45-50 ◽  
Author(s):  
John M. Dickey ◽  
Monika Marx-Zimmer ◽  
Christian Düsterberg ◽  
Ulrich Mebold ◽  
Snezana Stanimirović ◽  
...  

Surveys of λ21-cm absorption in the Magellanic System show that the cool phase of the HI is less abundant in the SMC than in the Milky Way, and may be so also in the LMC. The typical cool cloud temperature is colder than in the Milky Way, 30 to 40 K rather than 60 to 75 K. The lower abundance of cool phase HI can be traced to the lower heavy element abundances in the Magellanic environment. The cooler cloud temperatures are somewhat mysterious.


Sign in / Sign up

Export Citation Format

Share Document