scholarly journals Modelling the spinning dust emission from LDN 1780

2020 ◽  
Vol 495 (1) ◽  
pp. 1122-1135 ◽  
Author(s):  
Matias Vidal ◽  
Clive Dickinson ◽  
S E Harper ◽  
Simon Casassus ◽  
A N Witt

ABSTRACT We study the anomalous microwave emission (AME) in the Lynds Dark Nebula (LDN) 1780 on two angular scales. With publicly available data at an angular resolution of 1°, we studied the spectral energy distribution of the cloud in the 0.408–2997 GHz frequency range. The cloud presents a significant (>20σ) amount of AME, making it one of the clearest examples of AME on 1 ° scales, and its spectrum can be well fitted with a spinning dust (SD) model. We also find at these angular scales that the location of the peak of the emission at lower frequencies (23–70 GHz) differs from the location at the higher frequencies (90–3000 GHz) maps. In addition to the analysis on 1° angular scales, we present data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 31 GHz with an angular resolution of 2 arcmin, in order to study the origin of the AME in LDN 1780. We studied morphological correlations between the CARMA map and different infrared tracers of dust emission. We found that the best correlation is with the 70- μm template, which traces warm dust (T ∼ 50 K). Finally, we study the difference in radio emissivity between two locations within the cloud. We measured a factor of ≈6 difference in 31-GHz emissivity. We show that this variation can be explained, using the SD model, by a variation on the dust grain size distribution across the cloud, particularly changing the fraction of polycyclic aromatic hydrocarbon for a fixed total amount of carbon.

Author(s):  
Aaron C Bell ◽  
Takashi Onaka ◽  
Frédéric Galliano ◽  
Ronin Wu ◽  
Yasuo Doi ◽  
...  

AbstractThe anomalous microwave emission (AME) still lacks a conclusive explanation. This excess of emission, roughly between 10 and 50 GHz, tends to defy attempts to explain it as synchrotron or free–free emission. The overlap with frequencies important for cosmic microwave background explorations, combined with a strong correlation with interstellar dust, drive cross-disciplinary collaboration between interstellar medium and observational cosmology. The apparent relationship with dust has prompted a “spinning dust” hypothesis. The typical peak frequency range of the AME profile implicates spinning grains on the order of 1 nm. This points to polycyclic aromatic hydrocarbons (PAHs). We use data from the AKARI/Infrared Camera (IRC), due to its thorough PAH-band coverage, to compare AME from the Planck Collaboration astrophysical component separation product with infrared dust emission in the λ Orionis AME-prominent region. We look also at infrared dust emission from other mid-infrared and far-infrared bands. The results and discussion contained here apply to an angular scale of approximately 1°. We find that dust mass certainly correlates with AME, and that PAH-related emission in the AKARI/IRC 9 μm band correlates slightly more strongly. Using hierarchical Bayesian inference and full-dust spectral energy distribution (SED) modeling we argue that AME in λ Orionis correlates more strongly with PAH mass than with total dust mass, lending support for a spinning PAH hypothesis within this region. We emphasize that future efforts to understand AME should focus on individual regions, and a detailed comparison of the PAH features with the variation of the AME SED.


Author(s):  
Simon Casassus ◽  
Matías Vidal ◽  
Carla Arce-Tord ◽  
Clive Dickinson ◽  
Glenn J White ◽  
...  

Abstract Cm-wavelength radio continuum emission in excess of free-free, synchrotron and Rayleigh-Jeans dust emission (excess microwave emission, EME), and often called ‘anomalous microwave emission’, is bright in molecular cloud regions exposed to UV radiation, i.e. in photo-dissociation regions (PDRs). The EME correlates with IR dust emission on degree angular scales. Resolved observations of well-studied PDRs are needed to compare the spectral variations of the cm-continuum with tracers of physical conditions and of the dust grain population. The EME is particularly bright in the regions of the ρ Ophiuchi molecular cloud (ρ Oph) that surround the earliest type star in the complex, HD 147889, where the peak signal stems from the filament known as the ρ Oph-W PDR. Here we report on ATCA observations of ρ Oph-W that resolve the width of the filament. We recover extended emission using a variant of non-parametric image synthesis performed in the sky plane. The multi-frequency 17 GHz to 39 GHz mosaics reveal spectral variations in the cm-wavelength continuum. At ∼30 arcsec resolutions, the 17-20 GHz intensities follow tightly the mid-IR, Icm∝I(8 μm), despite the breakdown of this correlation on larger scales. However, while the 33-39 GHz filament is parallel to IRAC 8 μm, it is offset by 15–20 arcsec towards the UV source. Such morphological differences in frequency reflect spectral variations, which we quantify spectroscopically as a sharp and steepening high-frequency cutoff, interpreted in terms of the spinning dust emission mechanism as a minimum grain size acutoff ∼ 6 ± 1 Å that increases deeper into the PDR.


2017 ◽  
Vol 604 ◽  
pp. A52 ◽  
Author(s):  
A. Bracco ◽  
P. Palmeirim ◽  
Ph. André ◽  
R. Adam ◽  
P. Ade ◽  
...  

The characterization of dust properties in the interstellar medium is key for understanding the physics and chemistry of star formation. Mass estimates are crucial to determine gravitational collapse conditions for the birth of new stellar objects in molecular clouds. However, most of these estimates rely on dust models that need further observational constraints to capture the relevant parameter variations depending on the local environment: from clouds to prestellar and protostellar cores. We present results of a new study of dust emissivity changes based on millimeter continuum data obtained with the NIKA camera at the IRAM-30 m telescope. Observing dust emission at 1.15 mm and 2 mm allows us to constrain the dust emissivity index, β, in the Rayleigh-Jeans tail of the dust spectral energy distribution far from its peak emission, where the contribution of other parameters (i.e. dust temperature) is more important. Focusing on the Taurus molecular cloud, one of the most famous low-mass star-forming regions in the Gould Belt, we analyze the emission properties of several distinct objects in the B213 filament. This subparsec-sized region is of particular interest since it is characterized by a collection ofevolutionary stages of early star formation: three prestellar cores, two Class 0/I protostellar cores and one Class II object. We are therefore able to compare dust properties among a sequence of sources that likely derive from the same parent filament. By means of the ratio of the two NIKA channel maps, we show that in the Rayleigh-Jeans approximation, βRJ varies among the objects: it decreases from prestellar cores (βRJ ~ 2) to protostellar cores (βRJ ~ 1) and the Class II object (βRJ ~ 0). For one prestellar and two protostellar cores, we produce a robust study using available Herschel data to constrain the dust temperature of the sources. By using the Abel transform inversion technique we derive accurate radial temperature profiles that allow us to obtain radial β profiles. We find systematic spatial variations of β in the protostellar cores that are not observed in the prestellar core. While in the former case β decreases toward the center (with β varying between 1 and 2), in the latter it remains constant (β = 2.4 ± 0.3). Moreover, the dust emissivity index appears anticorrelated with the dust temperature. We discuss the implication of these results in terms of dust grain evolution between pre- and protostellar cores.


2019 ◽  
Vol 626 ◽  
pp. L2 ◽  
Author(s):  
S. Facchini ◽  
E. F. van Dishoeck ◽  
C. F. Manara ◽  
M. Tazzari ◽  
L. Maud ◽  
...  

The large majority of protoplanetary disks have very compact continuum emission (≲15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (∼10 mJy) orbiting the TTauri star CX Tau at a resolution of ∼40 mas, ∼5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of 12CO is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (> 5) strongly points to radial drift, and closely matches the predictions of theoretical models.


2019 ◽  
Vol 631 ◽  
pp. A38 ◽  
Author(s):  
S. Lianou ◽  
P. Barmby ◽  
A. A. Mosenkov ◽  
M. Lehnert ◽  
O. Karczewski

Aims. We derived the dust properties for 753 local galaxies and examine how these relate to some of their physical properties. We present the derived dust emission properties, including model spectral energy distribution (SEDs), star formation rates (SFRs) and stellar masses, as well as their relations. Methods. We modelled the global dust-SEDs for 753 galaxies, treated statistically as an ensemble within a hierarchical Bayesian dust-SED modelling approach, so as to derive their infrared (IR) emission properties. To create the observed dust-SEDs, we used a multi-wavelength set of observations, ranging from near-IR to far-IR-to-submillimeter wavelengths. The model-derived properties are the dust masses (Mdust), the average interstellar radiation field intensities (Uav), the mass fraction of very small dust grains (“QPAH” fraction), as well as their standard deviations. In addition, we used mid-IR observations to derive SFR and stellar masses, quantities independent of the dust-SED modelling. Results. We derive distribution functions of the properties for the galaxy ensemble and as a function of galaxy type. The mean value of Mdust for the early-type galaxies (ETGs) is lower than that for the late-type and irregular galaxies (LTGs and Irs, respectively), despite ETGs and LTGs having stellar masses spanning across the whole range observed. The Uav and “QPAH” fraction show no difference among different galaxy types. When fixing Uav to the Galactic value, the derived “QPAH” fraction varies across the Galactic value (0.071). The specific SFR increases with galaxy type, while this is not the case for the dust-specific SFR (SFR/Mdust), showing an almost constant star formation efficiency per galaxy type. The galaxy sample is characterised by a tight relationship between the dust mass and the stellar mass for the LTGs and Irs, while ETGs scatter around this relation and tend towards smaller dust masses. While the relation indicates that Mdust may fundamentally be linked to M⋆, metallicity and Uav are the second parameter driving the scatter, which we investigate in a forthcoming work. We used the extended Kennicutt–Schmidt (KS) law to estimate the gas mass and the gas-to-dust mass ratio (GDR). The gas mass derived from the extended KS law is on average ∼20% higher than that derived from the KS law, and a large standard deviation indicates the importance of the average star formation present to regulate star formation and gas supply. The average GDR for the LTGs and Irs is 370, and including the ETGs gives an average of 550.


2020 ◽  
Vol 633 ◽  
pp. A47 ◽  
Author(s):  
V. Hocdé ◽  
N. Nardetto ◽  
E. Lagadec ◽  
G. Niccolini ◽  
A. Domiciano de Souza ◽  
...  

Context. The infrared (IR) excess of classical Cepheids is seldom studied and poorly understood despite observational evidence and the potential for its contribution to induce systematics on the period-luminosity (PL) relation used in the calibration of the extragalactic distance scale. Aims. This study aims to understand the physical origin of the IR excess found in the spectral energy distribution (SED) of 5 Cepheids: RS Pup (P = 41.46d), ζ Gem (P = 10.15d), η Aql (P = 7.18d), V Cen (P = 5.49d) and SU Cyg (P = 3.85d). Methods. A time series of atmospheric models along the pulsation cycle were fitted to a compilation of data, including optical and near-IR photometry, Spitzer spectra (secured at a specific phase), interferometric angular diameters, effective temperature estimates, and radial velocity measurements. Herschel images in two bands were also analyzed qualitatively. In this fitting process, based on the SPIPS algorithm, a residual was found in the SED, whatever the pulsation phase, and for wavelengths larger than about 1.2 μm, which corresponds to the so-determined infrared excess of Cepheids. This IR excess was then corrected from interstellar medium absorption in order to infer the presence (or absence) of dust shells and was, ultimately, used in order to fit a model for a shell of ionized gas. Results. For all Cepheids, we find a continuum IR excess increasing up to approximately −0.1 magnitudes at 30 μm, which cannot be explained by a hot or cold dust model of CircumStellar Environment (CSE). However, a weak but significant dust emission at 9.7 μm is found for ζ Gem, η Aql and RS Pup, while clear interstellar clouds are seen in the Herschel images for V Cen and RS Pup. We show, for the first time, that the IR excess of Cepheids can be explained by free–free emission from a thin shell of ionized gas, with a thickness of ≃15% of the star radius, a mass of 10−9−10−7M⊙ and a temperature ranging between 3500 and 4500 K. Conclusions. The presence of a thin shell of ionized gas around Cepheids must be tested with interferometers operating in the visible or mid-IR, or using radio telescopes. The impact of such CSEs of ionized gas on the PL relation of Cepheids also calls for further investigation.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
E. S. Battistelli ◽  
E. Carretti ◽  
P. de Bernardis ◽  
S. Masi

We discuss in this paper the problem of the Anomalous Microwave Emission (AME) in the light of ongoing or future observations to be performed with the largest fully steerable radio telescope in the world. High angular resolution observations of the AME will enable astronomers to drastically improve the knowledge of the AME mechanisms as well as the interplay between the different constituents of the interstellar medium in our galaxy. Extragalactic observations of the AME have started as well, and high resolution is even more important in this kind of observations. When cross-correlating with IR-dust emission, high angular resolution is also of fundamental importance in order to obtain unbiased results. The choice of the observational frequency is also of key importance in continuum observation. We calculate a merit function that accounts for the signal-to-noise ratio (SNR) in AME observation given the current state-of-the-art knowledge and technology. We also include in our merit functions the frequency dependence in the case of multifrequency observations. We briefly mention and compare the performance of four of the largest radiotelescopes in the world and hope the observational programs in each of them will be as intense as possible.


2012 ◽  
Vol 8 (S292) ◽  
pp. 259-266 ◽  
Author(s):  
Takashi Onaka

AbstractInfrared (IR) observations provide significant information on the lifecycle of dust grains in the interstellar medium (ISM), which is crucial for the understanding of the evolution of matter in the universe. The IR spectral energy distribution (SED) of the dust emission tells us the relative abundance of sub-micron grains, very small grains, and carriers of the unidentified infrared (UIR) emission bands, since they emit the far-IR, the mid-IR, and the UIR bands from the near- to mid-IR, respectively. On the other hand, the UIR emission bands themselves offer a useful means to probe the physical conditions from which the band emission arises because each band is assigned to a specific C-H or C-C vibration mode and because its relative intensity should reflect the properties of the band carriers and the physical conditions of the environment. Here the two diagnostic methods using IR observations are briefly described together with examples of the observational results. Implications for the dust lifecycle are also discussed.


2017 ◽  
Vol 599 ◽  
pp. A51 ◽  
Author(s):  
◽  
N. Aghanim ◽  
M. Ashdown ◽  
J. Aumont ◽  
C. Baccigalupi ◽  
...  

The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the CBBℓ angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.


2017 ◽  
Vol 607 ◽  
pp. A55 ◽  
Author(s):  
G. van der Plas ◽  
F. Ménard ◽  
H. Canovas ◽  
H. Avenhaus ◽  
S. Casassus ◽  
...  

Context. Large cavities in disks are important testing grounds for the mechanisms proposed to drive disk evolution and dispersion, such as dynamical clearing by planets and photoevaporation. Aims. We aim to resolve the large cavity in the disk around HD 34282, whose presence has been predicted by previous studies modeling the spectral energy distribution of the disk. Methods. Using ALMA band 7 observations we studied HD 34282 with a spatial resolution of 0.10″ × 0.17′′ at 345 GHz. Results. We resolve the disk around HD 34282 into a ring between 0.24′′ and 1.15′′ (78+7-11 and 374+33-54 au adopting a distance of 325+29-47 pc). The emission in this ring shows azimuthal asymmetry centered at a radial distance of 0.46′′ and a position angle of 135° and an azimuthal FWHM of 51°. We detect CO emission both inside the disk cavity and as far out as 2.7 times the radial extent of the dust emission. Conclusions. Both the large disk cavity and the azimuthal structure in the disk around HD 34282 can be explained by the presence of a 50 Mjup brown dwarf companion at a separation of ≈0.1′′.


Sign in / Sign up

Export Citation Format

Share Document