scholarly journals Upper boundaries of active galactic nucleus regions in optical diagnostic diagrams

2020 ◽  
Vol 496 (2) ◽  
pp. 1262-1277 ◽  
Author(s):  
Xihan Ji ◽  
Renbin Yan ◽  
Rogério Riffel ◽  
Niv Drory ◽  
Kai Zhang

ABSTRACT The distribution of galaxies in optical diagnostic diagrams can provide information about their physical parameters when compared with ionization models under proper assumptions. By using a sample of central emitting regions from the Mapping Nearby Galaxies at Apache Point Observatory survey (MaNGA), we find evidence of the existence of upper boundaries for narrow-line regions (NLRs) of active galactic nuclei (AGNs) in optical Baldwin, Phillips & Terlevich (BPT) diagrams, especially in diagrams involving [S ii]λλ6716, 6731/Hα. Photoionization models can reproduce the boundaries well, as a consequence of the decrease of [S ii]λλ6716, 6731/Hα and [O iii]λ5007/Hβ ratios at very high metallicity. Whilst the exact location of the upper boundary in the [S ii] BPT diagram depends only weakly on the electron density of the ionized cloud and the secondary nitrogen prescription, its dependence on the shapes of the input spectral energy distributions (SEDs) is much stronger. This allows us to constrain the power-law index of the AGN SED between 1 Ryd and ∼100 Ryd to be less than or equal to −1.40 ± 0.05. The coverage of photoionization models in the [N ii] BPT diagram has a stronger dependence on the electron density and the secondary nitrogen prescription. With the density constrained by the [S ii] doublet ratio and the input SED constrained by the [S ii] BPT diagram, we find that the extent of the data in the [N ii] BPT diagram favours those prescriptions with high N/O ratios. Although shock-ionized clouds can produce line ratios similar to those from photoionization, the resulting shapes of the upper boundaries, if they exist, would likely be different from those of photoionizing origin.

2011 ◽  
Vol 7 (S284) ◽  
pp. 283-285
Author(s):  
Laure Ciesla ◽  

AbstractWe present the spectral energy distributions (SED) of the 323 galaxies of the Herschel Reference Survey. In order to provide templates for nearby galaxies calibrated on physical parameters, we computed mean SEDs per bin of morphological types and stellar masses. They will be very useful to study more distant galaxies and their evolution with redshift. This preliminary work aims to study how the most commonly used libraries (Chary & Elbaz 2001, Dale & Helou 2002 and Draine & Li 2007) reproduce the far-infrared emission of galaxies. First results show that they reproduce well the far-infrared part of mean SEDs. For single galaxies the Draine & Li (2007) models seem to reproduce very well the far-infrared emission, as does the Dale & Helou (2002).


2018 ◽  
Vol 611 ◽  
pp. A44 ◽  
Author(s):  
S. R. Patel ◽  
A. Shukla ◽  
V. R. Chitnis ◽  
D. Dorner ◽  
K. Mannheim ◽  
...  

Aims. The nearby TeV blazar 1ES 1959+650 (z = 0.047) was reported to be in flaring state during June–July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530–57589 using simultaneous multiwaveband data with the aim of understanding the possible broadband emission scenario during the flare. Methods. The UV-optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ-ray data from Fermi-LAT were used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands was quantified using discrete correlation function. The synchrotron self-Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results. A good correlation is seen between X-ray and high energy γ-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The power law index vs. flux plot in γ-ray band indicates the different emission regions for 0.1–3 GeV and 3–300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ-ray part of the SED in all states. The second zone is mainly required to produce less variable optical-UV and low energy γ-ray emission. Conclusions. Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ-rays.


2019 ◽  
Vol 15 (S341) ◽  
pp. 21-25
Author(s):  
M. J. I. Brown ◽  
K. J. Duncan ◽  
H. Landt ◽  
M. Kirk ◽  
C. Ricci ◽  
...  

AbstarctWe present ongoing work on the spectral energy distributions (SEDs) of active galactic nuclei (AGNs), derived from X-ray, ultraviolet, optical, infrared and radio photometry and spectroscopy. Our work is motivated by new wide-field imaging surveys that will identify vast numbers of AGNs, and by the need to benchmark AGN SED fitting codes. We have constructed 41 SEDs of individual AGNs and 80 additional SEDs that mimic Seyfert spectra. All of our SEDs span 0.09 to 30μm, while some extend into the X-ray and/or radio. We have tested the utility of the SEDs by using them to generate AGN photometric redshifts, and they outperform SEDs from the prior literature, including reduced redshift errors and flux density residuals.


2013 ◽  
Vol 9 (S304) ◽  
pp. 228-229
Author(s):  
Gabriela Calistro Rivera ◽  
Elisabeta Lusso ◽  
Joseph F. Hennawi ◽  
David W. Hogg

AbstractWe present AGNfitter: a Markov Chain Monte Carlo algorithm developed to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGN) with different physical models of AGN components. This code is well suited to determine in a robust way multiple parameters and their uncertainties, which quantify the physical processes responsible for the panchromatic nature of active galaxies and quasars. We describe the technicalities of the code and test its capabilities in the context of X-ray selected obscured AGN using multiwavelength data from the XMM-COSMOS survey.


2000 ◽  
Vol 44 (4) ◽  
pp. 246-254 ◽  
Author(s):  
I. N. Glushneva ◽  
V. I. Shenavrin ◽  
I. A. Roshchina

Author(s):  
Yurika Yamada ◽  
Makoto Uemura ◽  
Ryosuke Itoh ◽  
Yasushi Fukazawa ◽  
Masanori Ohno ◽  
...  

Abstract We report on the variations of the physical parameters of the jet observed in the blazar Mrk 421, and discuss the origin of X-ray flares in the jet, based on analysis of several spectral energy distributions (SEDs). The SEDs are modeled using the one-zone synchrotron self-Compton model, its parameters determined using a Markov chain Monte Carlo method. The lack of data at TeV energies means many of the parameters cannot be uniquely determined and are correlated. These are studied in detail. We find that the optimal solution can be uniquely determined only when we apply a constraint to one of four parameters: the magnetic field (B), the Doppler factor, the size of the emitting region, and the normalization factor of the electron energy distribution. We used 31 sets of SEDs from 2009 to 2014 with optical–UV data observed with UVOT/Swift and the Kanata telescope, X-ray data with XRT/Swift, and γ-ray data with the Fermi Large Area Telescope. The result of our SED analysis suggests that, in the X-ray faint state, the emission occurs in a relatively small area (∼1016 cm) with a relatively strong magnetic field (B ∼ 10−1 G). The X-ray bright state shows a tendency opposite to that of the faint state, that is, a large emitting area (∼1018 cm), probably downstream of the jet, and a weak magnetic field (B ∼ 10−3 G). The high X-ray flux was due to an increase in the maximum energy of electrons. On the other hand, the presence of two kinds of emitting areas implies that the one-zone model is unsuitable for reproducing at least part of the observed SEDs.


2011 ◽  
Vol 7 (S284) ◽  
pp. 279-282
Author(s):  
David L Clements ◽  

AbstractThe Herschel Space Observatory and the Planck satellite are providing radical improvements to our knowledge of the spectral energy distributions of galaxies in the far-IR and submm. We here present the results of the first combination of Herschel and Planck fluxes of local galaxies from the Herschel Reference Sample (HRS) survey, covering galaxies at distances between 15 and 25 Mpc. This combination provides information on SEDs in eight bands from 60μm, using IRAS, to 1.4mm using Planck. We apply a similar fitting procedure to this data as applied to the Planck ERCSC-detected nearby galaxies and confirm the result that dust significantly colder than 20K is common in local galaxies. It is early days for this kind of study, but it is clear that the new generation of satellites are already adding considerably to our knowledge of the far-IR/submm properties of galaxies.


2019 ◽  
Vol 628 ◽  
pp. A36 ◽  
Author(s):  
E. S. G. de Almeida ◽  
W. L. F. Marcolino ◽  
J.-C. Bouret ◽  
C. B. Pereira

Aims. Analyses of Galactic late O dwarfs (O8-O9.5V stars) raised the “weak wind problem”: spectroscopic mass-loss rates (Ṁ) are up to two orders of magnitude lower than the theoretical values. We investigated the stellar and wind properties of Galactic late O giants (O8-O9.5III stars). These stars have luminosities log (L⋆ ∕ L⊙) ~ 5.2, which is the critical value (onset of weak winds) proposed in the literature. Methods. We performed a spectroscopic analysis of nine O8-O9.5III stars in the ultraviolet (UV) and optical regions using the model atmosphere code CMFGEN. Results. Stellar luminosities were adopted using calibrations from the literature. Overall, our model spectral energy distributions agree well with the observed ones considering parallaxes from the latest Gaia data release (DR2). The effective temperature derived from the UV region agrees well with the ones from the optical. As expected, the analysis of the Hertzsprung–Russell (HR) diagram shows that our sample is more evolved than late O dwarfs. From the UV region, we found Ṁ ~ 10−8 − 10−9M⊙ yr−1 overall. This is lower by ~0.9 − 2.3 dex than predicted values based on the (global) conservation of energy in the wind. The mass-loss rates predicted from first principles, based on the moving reversing layer theory, agree better with our findings, but it fails to match the spectroscopic Ṁ for the most luminous OB stars. The region of log (L⋆ ∕ L⊙) ~ 5.2 is critical for both sets of predictions in comparison with the spectroscopic mass-loss rates. CMFGEN models with the predicted Ṁ (the former one) fail to reproduce the UV wind lines for all the stars of our sample. We reproduce the observed Hα profiles of four objects with our Ṁ derived from the UV. Hence, low Ṁ values (weak winds) are favored to fit the observations (UV + optical), but discrepancies between the UV and Hα diagnostics remain for some objects. Conclusions. Our results indicate weak winds beyond the O8-9.5V class, since the region of log (L⋆ ∕ L⊙) ~ 5.2 is indeed critical to the weak wind phenomenon. Since O8-O9.5III stars are more evolved than O8-9.5V, evolutionary effects do not seem to play a role in the onset of the weak wind phenomenon. These findings support that the Ṁ (for low luminosity O stars) in use in the majority of modern stellar evolution codes must be severely overestimated up to the end of the H-burning phase. Further investigations must evaluate the consequences of weak winds in terms of physical parameters for massive stars (e.g., angular momentum and CNO surface abundances).


Sign in / Sign up

Export Citation Format

Share Document