scholarly journals Evolution of galaxies in groups in the Coma Supercluster

2020 ◽  
Vol 497 (1) ◽  
pp. 466-481
Author(s):  
Ruchika Seth ◽  
Somak Raychaudhury

ABSTRACT We take a close look at the galaxies in the Coma Supercluster and assess the role of the environment (in the form of cluster, group, and supercluster filament) in their evolution, in particular, examining the role of groups. We characterize the groups according to intrinsic properties such as richness and halo mass, as well as their position in the supercluster and proximity to the two rich clusters, Abell 1656 (Coma) and Abell 1367. We devise a new way of characterizing the local environment using a kernel density estimator. We find that apart from the dominant effects of the galaxy mass, the effect of the environment on galaxies is a complex combination of the overdensities on various scales, which is characterized in terms of membership of groups, and also of the position of the galaxy on filaments and their proximity to the infall regions of clusters. Whether the gas can be turned into stars depends upon the level of pre-processing, which plays a role in how star formation is enhanced in a given environment. Our results are consistent with gas accreted in the cold mode from the filaments, being made available to enhance star formation. Finally, we show that the Abell 1367 end of the supercluster is in the process of assembly at present, leading to heightened star formation activity, in contrast with the Coma-end of the filament system.

2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2009 ◽  
Vol 5 (S267) ◽  
pp. 17-25 ◽  
Author(s):  
D. Elbaz

AbstractWe discuss evidence that quasars, and more generally radio jets, may have played an active role in the formation stage of galaxies by inducing star formation, i.e., through positive feedback. This mechanism first proposed in the 1970s has been considered as anecdotal until now, contrary to the opposite effect that is generally put forward, i.e., the quenching of star formation in massive galaxies to explain the galaxy bimodality, downsizing, and the universal black hole mass over bulge stellar mass ratio. This suggestion is based on the recent discovery of an ultra-luminous infrared galaxy, i.e., an extreme starburst, that appears to be triggered by a radio jet from the QSO HE 0450-2958 at z = 0.2863, together with the finding in several systems of a positional offset between molecular gas and quasars, which may be explained by the positive feedback effect of radio jets on their local environment.


2021 ◽  
Vol 7 (2) ◽  
pp. 49-57
Author(s):  
D. N. Chhatkuli ◽  
S. Paudel ◽  
A. K. Gautam ◽  
B. Aryal

We studied the spectroscopic properties of the low redshift (z = 0.0130) interacting dwarf galaxy SDSS J114818.18-013823.7. It is a compact galaxy of half-light radius 521 parsec. It’s r-band absolute magnitude is -16.71 mag. Using a publicly available optical spectrum from the Sloan Sky Survey data archive, we calculated star-formation rate, emission line metallicity, and dust extinction of the galaxy. Star formation rate (SFR) due to Hα is found to be 0.118 Mʘ year-1 after extinction correction. The emission-line metallicity, 12+log(O/H), is 8.13 dex. Placing these values in the scaling relation of normal galaxies, we find that SDSS J114818.18-013823.7 is a significant outlier from both size-magnitude relation and SFR-B-band absolute relation. Although SDSS J114818.18-013823.7 possess enhance rate of star-formation, the current star-formation activity can persist several Giga years in the future at the current place and it remains compact.


1987 ◽  
Vol 120 ◽  
pp. 323-324
Author(s):  
N. C. Rana ◽  
D.A. Wilkinson

A new law of star formation is proposed which suggests an explicit dependence on the abundance of metals and H2.


2019 ◽  
Vol 15 (S341) ◽  
pp. 226-230
Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K. Inoue ◽  
Anton Vikaeus ◽  
...  

AbstractRecently, spectroscopic detections of O[III] 88 μm and Ly-α emission lines from the z ≍ 9.1 galaxy MACS1149-JD1 have been presented, and with these, some interesting properties of this galaxy were uncovered. One such property is that MACS1149-JD1 exhibits a significant Balmer break at around rest-frame 4000 Å, which may indicate that the galaxy has experienced large variations in star formation rate prior to z ∼ 9, with a rather long period of low star formation activity. While some simulations predict large variations in star formation activity in high-redshift galaxies, it is unclear whether the simulations can reproduce the kind of variations seen in MACS1149-JD1. Here, we utilize synthetic spectra of simulated galaxies from two simulation suites in order to study to what extent these can accurately reproduce the spectral features (specifically the Balmer break) observed in MACS1149-JD1. We show that while the simulations used in this study produce galaxies with varying star formation histories, galaxies such as MACS1149-JD1 would be very rare in the simulations. In principle, future observations with the James Webb Space Telescope may tell us if MACS1149-JD1 represents something rare, or if such galaxies are more common than predicted by current simulations.


2020 ◽  
Vol 499 (1) ◽  
pp. 1406-1423 ◽  
Author(s):  
Lin Lin ◽  
Cheng Li ◽  
Cheng Du ◽  
Enci Wang ◽  
Ting Xiao ◽  
...  

ABSTRACT We analyse two-dimensional maps and radial profiles of EW(Hα), EW(HδA), and Dn(4000) of low-redshift galaxies using integral field spectroscopy from the MaNGA survey. Out of ≈1400 nearly face-on late-type galaxies with a redshift z < 0.05, we identify 121 “turnover” galaxies that each have a central upturn in EW(Hα), EW(HδA), and/or a central drop in Dn(4000), indicative of ongoing/recent star formation. The turnover features are found mostly in galaxies with a stellar mass above ∼1010 M⊙ and NUV – r colour less than ≈5. The majority of the turnover galaxies are barred, with a bar fraction of 89 ± 3 per cent. Furthermore, for barred galaxies, the radius of the central turnover region is found to tightly correlate with one-third of the bar length. Comparing the observed and the inward extrapolated star formation rate surface density, we estimate that the central SFR have been enhanced by an order of magnitude. Conversely, only half of the barred galaxies in our sample have a central turnover feature, implying that the presence of a bar is not sufficient to lead to a central SF enhancement. We further examined the SF enhancement in paired galaxies, as well as the local environment, finding no relation. This implies that the environment is not a driving factor for central SF enhancement in our sample. Our results reinforce both previous findings and theoretical expectation that galactic bars play a crucial role in the secular evolution of galaxies by driving gas inflow and enhancing the star formation and bulge growth in the centre.


2009 ◽  
Vol 5 (H15) ◽  
pp. 796-796
Author(s):  
G. A. Fuller ◽  
N. Peretto

AbstractTo better characterise infrared dark clouds (IRDCs), and the star formation within them, a comprehensive catalogue of IRDCs has been constructed from the Spitzer GLIMPSE and MIPSGAL archival data. Mosaicing the individual survey blocks together, we have used a new extraction method to identify dark clouds up to 30′ in size, and produce a column density image of each cloud. In total the catalogue contains over 11,000 clouds, defined as connected regions with 8 micron optical depth > 0.35 (corresponding to column densities < 1022 cm−2). The extraction algorithm also identifies sub-structures (fragments) within each cloud. These Spitzer dark clouds (SDCs) range in mass from 10M⊙ to 104M⊙. About 80% of the SDCs were previously unidentified. Only ~ 30% of the SDCs are associated with 24μm point-like sources, leaving the majority of these clouds with no apparent sign of star formation activity. This new catalogue provides an important new resource for future studies of the initial conditions of star formation in the Galaxy.


1987 ◽  
pp. 323-324
Author(s):  
N. C. Rana ◽  
D. A. Wilkinson
Keyword(s):  

2006 ◽  
Vol 2 (S237) ◽  
pp. 9-16
Author(s):  
Mark H. Heyer ◽  
Chris Brunt

AbstractThe observational record of turbulence within the molecular gas phase of the interstellar medium is summarized. We briefly review the analysis methods used to recover the velocity structure function from spectroscopic imaging and the application of these tools on sets of cloud data. These studies identify a near-invariant velocity structure function that is independent of the local environment and star formation activity. Such universality accounts for the cloud-to-cloud scaling law between the global line-width and size of molecular clouds found by Larson (1981) and constrains the degree to which supersonic turbulence can regulate star formation. In addition, the evidence for large scale driving sources necessary to sustain supersonic flows is summarized.


Sign in / Sign up

Export Citation Format

Share Document