scholarly journals Kinematic modelling of clusters with Gaia: the death throes of the Hyades

2020 ◽  
Vol 498 (2) ◽  
pp. 1920-1938
Author(s):  
Semyeong Oh ◽  
Neil Wyn Evans

ABSTRACT The precision of the Gaia data offers a unique opportunity to study the internal velocity field of star clusters. We develop and validate a forward-modelling method for the internal motions of stars in a cluster. The model allows an anisotropic velocity dispersion matrix and linear velocity gradient describing rotation and shear, combines radial velocities available for a subset of stars, and accounts for contamination from background sources via a mixture model. We apply the method to Gaia DR2 data of the Hyades cluster and its tidal tails, dividing and comparing the kinematics of stars within and beyond 10 pc, which is roughly the tidal radius of the cluster. While the velocity dispersion for the cluster is nearly isotropic, the velocity ellipsoid for the tails is clearly elongated with the major axis pointing towards the Galactic centre. We find positive and negative expansions at ≈2σ significance in Galactic azimuthal and vertical directions for the cluster but no rotation. The tidal tails are stretching in a direction tilted from the Galactic centre while equally contracting as the cluster in Galactic vertical direction. The tails have a shear (A) of 16.90 ± 0.92 $\mathrm{m}\, \mathrm{s}^{-1}\, \mathrm{pc}^{-1}$ and a vorticity (B) of −6.48 ± 1.15 $\mathrm{m}\, \mathrm{s}^{-1}\, \mathrm{pc}^{-1}$, values distinct from the local Oort constants. By solving the Jeans equations for flattened models of the Hyades, we show that the observed velocity dispersions are a factor of ≈2 greater than required for virial equilibrium due to tidal heating and disruption. From simple models of the mass loss, we estimate that the Hyades is close to final dissolution with only a further ≲30 Myr left.

2020 ◽  
Vol 640 ◽  
pp. A66 ◽  
Author(s):  
S. Freund ◽  
J. Robrade ◽  
P. C. Schneider ◽  
J. H. M. M. Schmitt

Aims. We revisit the X-ray properties of the main sequence Hyades members and the relation between X-ray emission and stellar rotation. Methods. As an input catalog for Hyades members, we combined three recent Hyades membership lists derived from Gaia DR2 data that include the Hyades core and its tidal tails. We searched for X-ray detections of the main sequence Hyades members in the ROSAT all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory, and XMM-Newton. Furthermore, we adopted rotation periods derived from Kepler’s K2 mission and other resources. Results. We find an X-ray detection for 281 of 1066 bona fide main sequence Hyades members and provide statistical upper limits for the undetected sources. The majority of the X-ray detected stars are located in the Hyades core because of its generally smaller distance to the Sun. F- and G-type stars have the highest detection fraction (72%), while K- and M-type dwarfs have lower detection rates (22%). The X-ray luminosities of the detected members range from ∼2 × 1027 erg s−1 for late M-type dwarfs to ∼2 × 1030 erg s−1 for active binaries. The X-ray luminosity distribution functions formally differ for the members in the core and tidal tails, which is likely caused by a larger fraction of field stars in our Hyades tails sample. Compared to previous studies, our sample is slightly fainter in X-rays due to differences in the Hyades membership list used; furthermore, we extend the X-ray luminosity distribution to fainter luminosities. The X-ray activity of F- and G-type stars is well defined at FX/Fbol ≈ 10−5. The fractional X-ray luminosity and its spread increases to later spectral types reaching the saturation limit (FX/Fbol ≈ 10−3) for members later than spectral type M3. Confirming previous results, the X-ray flux varies by less than a factor of three between epochs for the 104 Hyades members with multiple epoch data, significantly less than expected from solar-like activity cycles. Rotation periods are found for 204 Hyades members, with about half of them being detected in X-rays. The activity-rotation relation derived for the coeval Hyades members has properties very similar to those obtained by other authors investigating stars of different ages.


1991 ◽  
Vol 147 ◽  
pp. 221-228
Author(s):  
P. C. Myers

The properties and structure of six molecular complexes within 500 pc of the Sun are described and compared. They are generally organized into elongated filaments which appear connected to less elongated, more massive clouds. Their prominent star clusters tend to be located in the massive clouds rather than in the filaments. The complexes have similar structure, but big differences in scale, from a few pc to some 30 pc. They show a pattern of regional virial equilibrium, where the massive, centrally located clouds are close to virial equilibrium, while the less massive filaments and other small clouds have too little mass to bind their observed internal motions. Complexes can be ranked according to increasing size, mass, core mass, and the mass and number of the associated stars: they range from Lupus to Taurus to Ophiuchus to Perseus to Orion B to Orion A. The cores in nearby complexes tend to have maps which are elongated, rather than round. The core size, velocity dispersion, and column density of most cores are consistent with virial equilibrium. Cores in Orion tend to exceed cores in Taurus in their line width, size, temperature, mass, and in the mass of the associated star, if any. Stars in Orion tend to be more numerous and more massive than in Taurus, while those in Taurus tend to be more numerous and more massive than in Lupus. The mass of a core tends to increase with the mass of the cloud where it is found, with the mass of the star cluster with which it is associated, and with its proximity to a star cluster. These properties suggest that complexes and their constituent cores and clusters develop together over time, perhaps according to the depth of the gravitational well of the complex.


1999 ◽  
Vol 192 ◽  
pp. 89-94 ◽  
Author(s):  
R. M. Catchpole ◽  
P. A. Whitelock ◽  
M. W. Feast ◽  
S.M.G. Hughes ◽  
C. Alard ◽  
...  

Near-infrared, JHKL, observations of 595 Mira variables in two fields on either side of the centre of our Galaxy, confirm that the Bulge is not spherically symmetric about its axis of rotation, but is elongated so that the part to the east of the centre is closer to us. The shape of the Bulge about its axis of rotation is not uniquely defined by these data, but the shape that deviates least from circular symmetry has an axis ratio xo/yo = 1.7, with a major axis at an angle, θ = 58° ± 7, to the plane of the sky, for a galactic centre distance, R0 = 9.4 ± 0.5 kpc. This is based on an assumed scale length in galactic coordinates of bo = 375 pc and lo/bo = 2.0.


Author(s):  
S. Karaali ◽  
S. Bilir ◽  
S. Ak ◽  
E. Yaz Gökçe ◽  
Ö. Önal ◽  
...  

AbstractWe investigated the space velocity components of 6 610 red clump (RC) stars in terms of vertical distance, Galactocentric radial distance and Galactic longitude. Stellar velocity vectors are corrected for differential rotation of the Galaxy which is taken into account using photometric distances of RC stars. The space velocity components estimated for the sample stars above and below the Galactic plane are compatible only for the space velocity component in the direction to the Galactic rotation of the thin disc stars. The space velocity component in the direction to the Galactic rotation (Vlsr) shows a smooth variation relative to the mean Galactocentric radial distance (Rm), while it attains its maximum at the Galactic plane. The space velocity components in the direction to the Galactic centre (Ulsr) and in the vertical direction (Wlsr) show almost flat distributions relative to Rm, with small changes in their trends at Rm ~ 7.5 kpc. Ulsr values estimated for the RC stars in quadrant 180° < l ⩽ 270° are larger than the ones in quadrants 0° < l ⩽ 90° and 270° < l ⩽ 360°. The smooth distribution of the space velocity dispersions reveals that the thin and thick discs are kinematically continuous components of the Galaxy. Based on the Wlsr space velocity components estimated in the quadrants 0° < l ⩽ 90° and 270° < l ⩽ 360°, in the inward direction relative to the Sun, we showed that RC stars above the Galactic plane move towards the North Galactic Pole, whereas those below the Galactic plane move in the opposite direction. In the case of quadrant 180° < l ⩽ 270°, their behaviour is different, i.e. the RC stars above and below the Galactic plane move towards the Galactic plane. We stated that the Galactic long bar is the probable origin of many, but not all, of the detected features.


2020 ◽  
Vol 495 (4) ◽  
pp. 4124-4134 ◽  
Author(s):  
Peter S Ferguson ◽  
Louis E Strigari

ABSTRACT We obtain distances to a sample of RR Lyrae in the central core of the Sagittarius dwarf spheroidal galaxy from OGLE data. We use these distances, along with RR Lyrae from Gaia DR2, to measure the shape of the stellar distribution within the central ∼2 kpc. The best-fitting stellar distribution is triaxial, with axis ratios 1 : 0.76 : 0.43. A prolate-spheroid model is ruled out at high statistical significance relative to the triaxial model. The major axis is aligned nearly parallel to the sky plane as seen by an Earth-based observer and is nearly perpendicular to the direction of the Galactic Centre. This result may be compared to cosmological simulations which generally predict that the major axis of the dark matter distribution of subhalos is aligned with the Galactic Centre. The triaxial structure that we obtain can provide important constraints on the Sagittarius progenitor, as well as the central dark matter distribution under the assumption of dynamical equilibrium.


2019 ◽  
Vol 631 ◽  
pp. A91 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
F. Combes ◽  
J. Chisholm ◽  
V. Patrício ◽  
...  

We compare the molecular and ionized gas kinematics of two strongly lensed galaxies at z ∼ 1 that lie on the main sequence at this redshift. The observations were made with ALMA and MUSE, respectively. We derive the CO and [O II] rotation curves and dispersion profiles of these two galaxies. We find a difference between the observed molecular and ionized gas rotation curves for one of the two galaxies, the Cosmic Snake, for which we obtain a spatial resolution of a few hundred parsec along the major axis. The rotation curve of the molecular gas is steeper than the rotation curve of the ionized gas. In the second galaxy, A521, the molecular and ionized gas rotation curves are consistent, but the spatial resolution is only a few kiloparsec on the major axis. Using simulations, we investigate the effect of the thickness of the gas disk and effective radius on the observed rotation curves and find that a more extended and thicker disk smoothens the curve. We also find that the presence of a strongly inclined (> 70°) thick disk (> 1 kpc) can smoothen the rotation curve because it degrades the spatial resolution along the line of sight. By building a model using a stellar disk and two gas disks, we reproduce the rotation curves of the Cosmic Snake with a molecular gas disk that is more massive and more radially and vertically concentrated than the ionized gas disk. Finally, we also obtain an intrinsic velocity dispersion in the Cosmic Snake of 18.5 ± 7 km s−1 and 19.5 ± 6 km s−1 for the molecular and ionized gas, respectively, which is consistent with a molecular disk with a smaller and thinner disk. For A521, the intrinsic velocity dispersion values are 11 ± 8 km s−1 and 54 ± 11 km s−1, with a higher value for the ionized gas. This could indicate that the ionized gas disk is thicker and more turbulent in this galaxy. These results highlight the diversity of the kinematics of galaxies at z ∼ 1 and the different spatial distribution of the molecular and ionized gas disks. It suggests the presence of thick ionized gas disks at this epoch and that the formation of the molecular gas is limited to the midplane and center of the galaxy in some objects.


2020 ◽  
Vol 493 (1) ◽  
pp. 627-637
Author(s):  
Daniel P Cohen ◽  
Jean L Turner ◽  
S Michelle Consiglio

ABSTRACT We observed the Brackett α emission line (4.05 μm) within the nuclear starburst of NGC 253 to measure the kinematics of ionized gas, and distinguish motions driven by star formation feedback from gravitational motions induced by the central mass structure. Using NIRSPEC on Keck II, we obtained 30 spectra through a $0^{\prime \prime }_{.}5$ slit stepped across the central ∼5 arcsec × 25 arcsec (85 × 425 pc) region to produce a spectral cube. The Br α emission resolves into four nuclear sources: S1 at the infrared core (IRC), N1 at the radio core, and the fainter sources N2 and N3 in the northeast. The line profile is characterized by a primary component with Δvprimary ∼90–130 $\rm km\, s^{-1}$ (full width at half-maximum) on top of a broad blue 2wing with Δvbroad ∼300–350 $\rm km\, s^{-1}$, and an additional redshifted narrow component in the west. The velocity field generated from our cube reveals several distinct patterns. A mean NE–SW velocity gradient of +10 $\rm km\, s^{-1}$ arcsec−1 along the major axis traces the solid-body rotation curve of the nuclear disc. At the radio core, isovelocity contours become S-shaped, indicating the presence of secondary nuclear bar of total extent ∼5 arcsec (90 pc). The symmetry of the bar places the galactic centre, and potential supermassive black hole, near the radio peak rather than the IRC. A third kinematic substructure is formed by blueshifted gas near the IRC. This feature likely traces a ∼100–250 $\rm km\, s^{-1}$ starburst-driven outflow, potentially linking the IRC to the galactic wind observed on kpc scales.


2019 ◽  
Vol 489 (1) ◽  
pp. L22-L27
Author(s):  
Nicola C Amorisco

ABSTRACT The dwarf satellite galaxies of the Milky Way Crater II and Antlia II have uncommonly low dynamical mass densities, due to their large size and low velocity dispersion. Previous work have found it difficult to identify formation scenarios within the Λ cold dark matter (ΛCDM) framework and have invoked cored dark matter haloes, processed by tides. I show that the tidal evolution of ΛCDM NFW haloes is richer than previously recognized. In haloes that fall short of the mass–concentration relation, tidal heating causes the innermost regions to expand significantly, resulting in the formation of giant, kinematically cold satellites like Crater II and Antlia II. While these satellites are reaching apocentre, extra-tidal material can cause an even more inflated appearance. If originally underconcentrated, Crater II and Antlia II may well have experienced very little mass loss, as in fact hinted by their observed metallicity. On a cosmological scale, satellites with low dynamical mass densities are not a rare occurrence, but were more frequent in the past. If indeed a satellite of NGC 1052, the same mechanism may similarly have led to the formation of NGC 1052-DF2.


2019 ◽  
Vol 490 (3) ◽  
pp. 3830-3839 ◽  
Author(s):  
Min Bao ◽  
Yan-mei Chen ◽  
Qi-rong Yuan ◽  
Yong Shi ◽  
Dmitry Bizyaev ◽  
...  

ABSTRACT Using the integral field unit (IFU) data from Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we study the kinematics of gas and stellar components in an edge-on Seyfert 2 galaxy, SDSS J171359.00+333625.5, with X-shaped bi-conical outflows. The gas and stars therein are found to be counter-rotating, indicating that the collision between the inner and external gas might be an effective way to dissipate the angular momentum, which leads to remarkable gas accretion into the galaxy centre. Large [O iii]λ5007 equivalent width and AGN-like line ratio in the large bi-conical region suggest that the gas is ionized by the central AGN. The gas velocity in the bi-cone region shows that ionized gas is receding relative to the galaxy centre, which could be the joint effect of inflows, outflows, and disc rotation. We are probably witnessing the case where a great amount of gas in the disc is being efficiently accreted into the central black hole, and the AGN-driven galactic winds are blown out along the bi-cone. The kinematics of oxygen, including rotation velocity and velocity dispersion, is different from other elements, like hydrogen, nitrogen, and sulphur. The rotation velocity estimated from oxygen is slower than from other elements. The velocity dispersion of other elements follows galactic gravitational potential, while the velocity dispersion of oxygen stays roughly constant along the galactic major-axis. The further advanced observations, e.g. of cold gas or with an IFU of higher spatial resolution, are required to better understand this object.


2007 ◽  
Vol 3 (S244) ◽  
pp. 321-325
Author(s):  
Jarosław Klimentowski ◽  
Ewa L. Łokas ◽  
Stelios Kazantzidis ◽  
Francisco Prada ◽  
Lucio Mayer ◽  
...  

AbstractWe study the origin and properties of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. We create mock kinematic data sets by observing the dwarf in different directions. When the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. However, most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert. We model the velocity dispersion profiles of the cleaned-up kinematic samples using solutions of the Jeans equation. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25%.


Sign in / Sign up

Export Citation Format

Share Document