scholarly journals Black widow formation by pulsar irradiation and sustained magnetic braking

2020 ◽  
Vol 500 (2) ◽  
pp. 1592-1603
Author(s):  
Sivan Ginzburg ◽  
Eliot Quataert

ABSTRACT Black widows are millisecond pulsars with low-mass companions, a few per cent the mass of the sun, on orbits of several hours. These companions are presumably the remnants of main-sequence stars that lost their mass through a combination of Roche lobe overflow and ablation by the host pulsar’s high-energy radiation. While ablation itself is too weak to significantly reduce the mass of the companion star, the ablated wind couples to its magnetic field, removes orbital angular momentum, and thus maintains stable Roche lobe overflow. We use the mesa stellar evolution code, complemented by analytical estimates, to track initially main-sequence companions as they are reduced to a fraction of their original mass by this ablation-driven magnetic braking. We argue that magnetic braking remains effective even for low-mass companions. A key ingredient of our model is that the irradiating luminosity of the pulsar Lirr deposits energy in the companion’s atmosphere and thereby slows down its Kelvin–Helmholtz cooling. We find that the high-energy luminosities measured by Fermi  $L_{\rm irr}=0.1\rm {-}3$ L⊙ can explain the span of black widow orbital periods. The same Lirr range reproduces the companions’ night-side temperatures, which cluster around 3000 K, as inferred from optical light curves.

2010 ◽  
Vol 6 (S275) ◽  
pp. 404-405
Author(s):  
María V. del Valle ◽  
Gustavo E. Romero

AbstractT Tauri stars are low mass, pre-main sequence stars. These objects are surrounded by an accretion disk and present strong magnetic activity. T Tauri stars are copious emitters of X-ray emission which belong to powerful magnetic reconnection events. Strong magnetospheric shocks are likely outcome of massive reconnection. Such shocks can accelerate particles up to relativistic energies through Fermi mechanism. We present a model for the high-energy radiation produced in the environment of T Tauri stars. We aim at determining whether this emission is detectable. If so, the T Tauri stars should be very nearby.


1983 ◽  
Vol 72 ◽  
pp. 257-262
Author(s):  
H. Ritter

ABSTRACTIt is shown that the secondary components of cataclysmic binaries with orbital periods of less than ~10 hours are indistinguishable from ordinary low-mass main-sequence stars and that, therefore, they are essentially unevolved. On the other hand, it is shown that, depending on the mass ratio of the progenitor system, the secondary of a cataclysmic binary could be significantly evolved. The fact that nevertheless most of the observed secondaries are essentially unevolved can be accounted for by assuming that the probability distribution for the initial mass ratio is not strongly peaked towards unity mass ratio.


2010 ◽  
Vol 6 (S276) ◽  
pp. 3-12
Author(s):  
Geoffrey W. Marcy ◽  
Andrew W. Howard ◽  

AbstractWe analyze the statistics of Doppler-detected planets and Keplere-detected planet candidates of high integrity. We determine the number of planets per star as a function of planet mass, radius, and orbital period, and the occurrence of planets as a function of stellar mass. We consider only orbital periods less than 50 days around Solar-type (GK) stars, for which both Doppler and Kepler offer good completeness. We account for observational detection effects to determine the actual number of planets per star. From Doppler-detected planets discovered in a survey of 166 nearby G and K main sequence stars we find a planet occurrence of 15+5−4% for planets with M sin i = 3–30 ME and P < 50 d, as described in Howard et al. (2010). From Keplere, the planet occurrence is 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2–4, 4–8, and 8–32 RE, consistent with Doppler-detected planets. From Keplere, the number of planets per star as a function of planet radius is given by a power law, df/dlog R = kRRα with kR = 2.9+0.5−0.4, α = −1.92 ± 0.11, and R = RP/RE. Neither the Doppler-detected planets nor the Keplere-detected planets exhibit a “desert” at super-Earth and Neptune sizes for close-in orbits, as suggested by some planet population synthesis models. The distribution of planets with orbital period, P, shows a gentle increase in occurrence with orbital period in the range 2–50 d. The occurrence of small, 2–4 RE planets increases with decreasing stellar mass, with seven times more planets around low mass dwarfs (3600–4100 K) than around massive stars (6600–7100 K).


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Ingrid Pelisoli ◽  
S. O. Kepler ◽  
Detlev Koester

AbstractEvolved stars with a helium core can be formed by non-conservative mass exchange interaction with a companion or by strong mass loss. Their masses are smaller than 0.5 M⊙. In the database of the Sloan Digital Sky Survey (SDSS), there are several thousand stars which were classified by the pipeline as dwarf O, B and A stars. Considering the lifetimes of these classes on the main sequence, and their distance modulus at the SDSS bright saturation, if these were common main sequence stars, there would be a considerable population of young stars very far from the galactic disk. Their spectra are dominated by Balmer lines which suggest effective temperatures around 8 000-10 000 K. Several thousand have significant proper motions, indicative of distances smaller than 1 kpc. Many show surface gravity in intermediate values between main sequence and white dwarf, 4.75 < log g < 6.5, hence they have been called sdA stars. Their physical nature and evolutionary history remains a puzzle. We propose they are not H-core main sequence stars, but helium core stars and the outcomes of binary evolution. We report the discovery of two new extremely-low mass white dwarfs among the sdAs to support this statement.


2003 ◽  
Vol 341 (3) ◽  
pp. 805-822 ◽  
Author(s):  
M. Pozzo ◽  
T. Naylor ◽  
R. D. Jeffries ◽  
J. E. Drew

1988 ◽  
Vol 108 ◽  
pp. 217-218
Author(s):  
Masatoshi Kitamura ◽  
Yasuhisa Nakamura

The ordinary semi-detached close binary system consists of a main-sequence primary and subgiant (or giant) secondary component where the latter fills the Roche lobe. From a quantitative analysis of the observed ellipticity effect, Kitamura and Nakamura (1986) have deduced empirical values of the exponent of gravity-darkening for distorted main-sequence stars in detached systems and found that the empirical values of the exponent for these stars with early-type spectra are close to the unity, indicating that the subsurface layers of early-main sequence stars in close binaries are actually in radiative equilibrium. The exponent of gravity-darkening can be defined by H ∝ gα with H as the bolonetric surface brightness and g as the local gravity on the stellar surface.


1988 ◽  
Vol 108 ◽  
pp. 226-231
Author(s):  
Mario Livio

Classical nova (CN) and dwarf nova (DN) systems have the same binary components (a low-mass main sequence star and a white dwarf) and the same orbital periods. An important question that therefore arises is: are these systems really different ? (and if so, what is the fundamental difference ?) or, are these the same systems, metamorphosing from one class to the other ?The first thing to note in this respect is that the white dwarfs in DN systems are believed to accrete continuously (both at quiescence and during eruptions). At the same time, both analytic (e.g. Fujimoto 1982) and numerical calculations show, that when sufficient mass accumulates on the white dwarf, a thermonuclear runaway (TNR) is obtained and a nova outburst ensues (see e.g. reviews by Gallagher and Starrfield 1978, Truran 1982). It is thus only natural, to ask the question, is the fact that we have not seen a DN undergo a CN outburst (in about 50 years of almost complete coverage) consistent with observations of DN systems ? In an attempt to answer this question, we have calculated the probability for a nova outburst not to occur (in 50 years) in 86 DN systems (for which at least some of the orbital parameters are known).


2020 ◽  
Vol 497 (1) ◽  
pp. 809-817 ◽  
Author(s):  
James A G Jackman ◽  
Peter J Wheatley ◽  
Jack S Acton ◽  
David R Anderson ◽  
Claudia Belardi ◽  
...  

ABSTRACT We present the detection of high-energy white-light flares from pre-main-sequence stars associated with the Orion Complex, observed as part of the Next Generation Transit Survey (NGTS). With energies up to 5.2 × 1035 erg these flares are some of the most energetic white-light flare events seen to date. We have used the NGTS observations of flaring and non-flaring stars to measure the average flare occurrence rate for 4 Myr M0–M3 stars. We have also combined our results with those from previous studies to predict average rates for flares above 1 × 1035 erg for early M stars in nearby young associations.


Sign in / Sign up

Export Citation Format

Share Document