scholarly journals Co-formation of the thin and thick discs revealed by APOGEE-DR16 and Gaia-DR2

Author(s):  
Leandro Beraldo e Silva ◽  
Victor P Debattista ◽  
David Nidever ◽  
João A S Amarante ◽  
Bethany Garver

Abstract Since thin disc stars are younger than thick disc stars on average, the thin disc is predicted by some models to start forming after the thick disc had formed, around 10 Gyr ago. Accordingly, no significant old thin disc population should exist. Using 6-D coordinates from Gaia-DR2 and age estimates from Sanders & Das (2018), we select ∼24000 old stars (${\tau > 10{\, \rm{Gyr}}}$, with uncertainties $\lesssim 15\%$) within $2{\, \rm{kpc}}$ from the Sun (full sample). A cross-match with APOGEE-DR16 (∼1000 stars) reveals comparable fractions of old chemically defined thin/thick disc stars. We show that the full sample pericenter radius (rper) distribution has three peaks, one associated with the stellar halo and the other two having contributions from the thin/thick discs. Using a high-resolution N-body+SPH simulation, we demonstrate that one peak, at ${r_\rm{per}}\approx 7.1{\, \rm{kpc}}$, is produced by stars from both discs which were born in the inner Galaxy and migrated to the Solar Neighbourhood. In the Solar Neighbourhood, ∼1/2 (∼1/3) of the old thin (thick) disc stars are classified as migrators. Our results suggest that thin/thick discs are affected differently by radial migration inasmuch as they have different eccentricity distributions, regardless of vertical scale heights. We interpret the existence of a significant old thin disc population as evidence for an early co-formation of thin/thick discs, arguing that clump instabilities in the early disc offer a compelling explanation for the observed trends.

2020 ◽  
Vol 492 (3) ◽  
pp. 3816-3828 ◽  
Author(s):  
João A S Amarante ◽  
Martin C Smith ◽  
Corrado Boeche

ABSTRACT Although the stellar halo accounts for just ∼1 per cent of the total stellar mass of the Milky Way, the kinematics of halo stars encode valuable information about the origins and evolution of our Galaxy. It has been shown that the high transverse velocity stars in Gaia DR2 reveal a double sequence in the Hertzsprung–Russell (HR) diagram, indicating a bifurcation in the local stellar halo within 1 kpc. We fit these stars by updating the popular Besançon/Galaxia model, incorporating the latest observational results for the stellar halo and an improved kinematic description for the thick disc from Schönrich & Binney (2012). We are able to obtain a good match to the Gaia data and provide new constraints on the properties of the Galactic disc and stellar halo. In particular, we show that the kinematically defined thick-disc contribution to this high velocity tail is $\approx 13{{\ \rm per\ cent}}$. We look in greater detail using chemistry from LAMOST DR5, identifying a population of retrograde stars with thick-disc chemistry. Our thick-disc kinematic model cannot account for this population and so we conclude there is likely to be a contribution from heated or accreted stars in the Solar Neighbourhood. We also investigate proposed dynamical substructures in this sample, concluding that they are probably due to resonant orbits rather than accreted populations. Finally, we provide new insights on the nature of the two sequences and their relation with past accretion events and the primordial Galactic disc.


2019 ◽  
Vol 491 (3) ◽  
pp. 4365-4381 ◽  
Author(s):  
Andreia Carrillo ◽  
Keith Hawkins ◽  
Brendan P Bowler ◽  
William Cochran ◽  
Andrew Vanderburg

ABSTRACT The Transiting Exoplanet Survey Satellite (TESS) has already begun to discover what will ultimately be thousands of exoplanets around nearby cool bright stars. These potential host stars must be well understood to accurately characterize exoplanets at the individual and population levels. We present a catalogue of the chemo-kinematic properties of 2218 434 stars in the TESS Candidate Target List using survey data from Gaia DR2, APOGEE, GALAH, RAVE, LAMOST, and photometrically derived stellar properties from SkyMapper. We compute kinematic thin disc, thick disc, and halo membership probabilities for these stars and find that though the majority of TESS targets are in the thin disc, 4 per cent of them reside in the thick disc and <1 per cent of them are in the halo. The TESS Objects of Interest in our sample also display similar contributions from the thin disc, thick disc, and halo with a majority of them being in the thin disc. We also explore metallicity and [α/Fe] distributions for each Galactic component and show that each cross-matched survey exhibits metallicity and [α/Fe] distribution functions that peak from higher to lower metallicity and lower to higher [α/Fe] from the thin disc to the halo. This catalogue will be useful to explore planet occurrence rates, among other things, with respect to kinematics, component membership, metallicity, or [α/Fe].


2019 ◽  
Vol 485 (4) ◽  
pp. 5573-5589 ◽  
Author(s):  
S Torres ◽  
C Cantero ◽  
A Rebassa-Mansergas ◽  
G Skorobogatov ◽  
F M Jiménez-Esteban ◽  
...  

2019 ◽  
Vol 14 (S353) ◽  
pp. 59-60
Author(s):  
João A. S. Amarante ◽  
Martin C. Smith ◽  
Corrado Boeche

AbstractAlthough the stellar halo accounts for just ∼1% of the total stellar mass of the Milky Way, the kinematics of halo stars can tell us a lot about the origins and evolution of our Galaxy. It has been shown that the high transverse velocity stars in Gaia DR2 reveal a double sequence in the Hertzsprung-Russell (HR) diagram, indicating a duality in the local halo within 1 kpc. We fit these stars by updating the popular Besançon/Galaxia model, incorporating the latest observational results for the stellar halo. We are able to obtain a good match to the Gaia data and provide new constraints on the properties of the disc and halo. In particular, we show that the thick disc contribution to this high velocity tail is small, but not negligible, and likely has an influence on the red sequence of the HR diagram.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


2018 ◽  
Vol 619 ◽  
pp. A143 ◽  
Author(s):  
G. Guiglion ◽  
P. de Laverny ◽  
A. Recio-Blanco ◽  
N. Prantzos

Context. The chemical evolution of neutron capture elements in the Milky Way disc is still a matter of debate. There is a lack of statistically significant catalogues of such element abundances, especially those of the r-process. Aims. We aim to understand the chemical evolution of r-process elements in Milky Way disc. We focus on three pure r-process elements Eu, Gd, and Dy. We also consider a pure s-process element, Ba, in order to disentangle the different nucleosynthesis processes. Methods. We take advantage of high-resolution FEROS, HARPS, and UVES spectra from the ESO archive in order to perform a homogeneous analysis on 6500 FGK Milky Way stars. The chemical analysis is performed thanks to the automatic optimization pipeline GAUGUIN. We present abundances of Ba (5057 stars), Eu (6268 stars), Gd (5431 stars), and Dy (5479 stars). Based on the [α/Fe] ratio determined previously by the AMBRE Project, we chemically characterize the thin and the thick discs, and a metal-rich α-rich population. Results. First, we find that the [Eu/Fe] ratio follows a continuous sequence from the thin disc to the thick disc as a function of the metallicity. Second, in thick disc stars, the [Eu/Ba] ratio is found to be constant, while the [Gd/Ba] and [Dy/Ba] ratios decrease as a function of the metallicity. These observations clearly indicate a different nucleosynthesis history in the thick disc between Eu and Gd–Dy. The [r/Fe] ratio in the thin disc is roughly around +0.1 dex at solar metallicity, which is not the case for Ba. We also find that the α-rich metal-rich stars are also enriched in r-process elements (like thick disc stars), but their [Ba/Fe] is very different from thick disc stars. Finally, we find that the [r/α] ratio tends to decrease with metallicity, indicating that supernovae of different properties probably contribute differently to the synthesis of r-process elements and α-elements. Conclusions. We provide average abundance trends for [Ba/Fe] and [Eu/Fe] with rather small dispersions, and for the first time for [Gd/Fe] and [Dy/Fe]. This data may help to constrain chemical evolution models of Milky Way r- and s-process elements and the yields of massive stars. We emphasize that including yields of neutron-star or black hole mergers is now crucial if we want to quantitatively compare observations to Galactic chemical evolution models.


2018 ◽  
Vol 614 ◽  
pp. A63 ◽  
Author(s):  
K. Sysoliatina ◽  
A. Just ◽  
O. Golubov ◽  
Q. A. Parker ◽  
E. K. Grebel ◽  
...  

Aims. We construct the rotation curve of the Milky Way in the extended solar neighbourhood using a sample of Sloan Extension for Galactic Understanding and Exploration (SEGUE) G-dwarfs. We investigate the rotation curve shape for the presence of any peculiarities just outside the solar radius as has been reported by some authors. Methods. Using the modified Strömberg relation and the most recent data from the RAdial Velocity Experiment (RAVE), we determine the solar peculiar velocity and the radial scale lengths for the three populations of different metallicities representing the Galactic thin disc. Subsequently, with the same binning in metallicity for the SEGUE G-dwarfs, we construct the rotation curve for a range of Galactocentric distances from 7 to 10 kpc. We approach this problem in a framework of classical Jeans analysis and derive the circular velocity by correcting the mean tangential velocity for the asymmetric drift in each distance bin. With SEGUE data we also calculate the radial scale length of the thick disc taking as known the derived peculiar motion of the Sun and the slope of the rotation curve. Results. The tangential component of the solar peculiar velocity is found to be V ⊙ = 4.47 ± 0.8 km s−1 and the corresponding scale lengths from the RAVE data are Rd(0 < [Fe/H] < 0.2) = 2.07 ± 0.2 kpc, Rd(−0.2 < [Fe/H] < 0) = 2.28 ± 0.26 kpc and Rd(−0.5 < [Fe/H] <−0.2) = 3.05 ± 0.43 kpc. In terms of the asymmetric drift, the thin disc SEGUE stars are demonstrated to have dynamics similar to the thin disc RAVE stars, therefore the scale lengths calculated from the SEGUE sample have close values: Rd(0 < [Fe/H] < 0.2) = 1.91 ± 0.23 kpc, Rd(−0.2 < [Fe/H] < 0) = 2.51 ± 0.25 kpc and Rd(−0.5 < [Fe/H] <−0.2) = 3.55 ± 0.42 kpc. The rotation curve constructed through SEGUE G-dwarfs appears to be smooth in the selected radial range 7 kpc < R < 10 kpc. The inferred power law index of the rotation curve is 0.033 ± 0.034, which corresponds to a local slope of dV c∕dR = 0.98 ± 1 km s−1 kpc−1. The radial scale length of the thick disc is 2.05 kpc with no essential dependence on metallicity. Conclusions. The local kinematics of the thin disc rotation as determined in the framework of our new careful analysis does not favour the presence of a massive overdensity ring just outside the solar radius. We also find values for solar peculiar motion, radial scale lengths of thick disc, and three thin disc populations of different metallicities as a side result of this work.


2018 ◽  
Vol 615 ◽  
pp. A100 ◽  
Author(s):  
A. Gómez ◽  
P. Di Matteo ◽  
M. Schultheis ◽  
F. Fragkoudi ◽  
M. Haywood ◽  
...  

Although there is consensus that metal-rich stars in the Milky Way bulge are formed via secular evolution of the thin disc, the origin of their metal-poor counterparts is still under debate. Two different origins have been invoked for metal-poor stars: they might be classical bulge stars or stars formed via internal evolution of a massive thick disc. We use N-body simulations to calculate the kinematic signature given by the difference in the mean Galactocentric radial velocity (ΔVGC) between metal-rich stars ([Fe/H] ≥ 0) and moderately metal-poor stars (–1.0 ≤ [Fe/H] < 0) in two models, one containing a thin disc and a small classical bulge (B/D = 0.1), and the other containing a thin disc and a massive centrally concentrated thick disc. We reasonably assume that thin-disk stars in each model may be considered as a proxy of metal-rich stars. Similarly, bulge stars and thick-disc stars may be considered as a proxy of metal-poor stars. We calculate ΔVGC at different latitudes (b = 0°, − 2°, − 4°, − 6°, − 8° and − 10°) and longitudes (l = 0°, ± 5°, ± 10° and ± 15°) and show that the ΔVGC trends predicted by the two models are different. We compare the predicted results with ARGOS data and APOGEE DR13 data and show that moderately metal-poor stars are well reproduced with the co-spatial stellar discs model, which has a massive thick disc. Our results give more evidence against the scenario that most of the metal-poor stars are classical bulge stars. If classical bulge stars exists, most of them probably have metallicities [Fe/H] < –1 dex, and their contribution to the mass of the bulge should be a small percentage of the total bulge mass.


2019 ◽  
Vol 489 (2) ◽  
pp. 2505-2510 ◽  
Author(s):  
Moiya A S McTier ◽  
David M Kipping

Abstract We demonstrate that planet occurrence does not depend on stellar galactocentric velocity in the Solar neighbourhood. Using Gaia DR2 astrometry and radial velocity data, we calculate 3D galactocentric velocities for 197 090 Kepler field stars, 1647 of which are confirmed planet hosts. When we compare the galactocentric velocities of planet hosts to those of the entire field star sample, we observe a statistically significant (KS p-value  = 10−70) distinction, with planet hosts being apparently slower than field stars by ∼40 km s−1. We explore some potential explanations for this difference and conclude that it is not a consequence of the planet–metallicity relation or distinctions in the samples’ thin/thick disc membership, but rather an artefact of Kepler’s selection function. Non Kepler-host stars that have nearly identical distances, temperatures, surface gravities, and Kepler magnitudes to the confirmed planet hosts also have nearly identical velocity distributions. Using one of these identical non-host samples, we consider that the probability of a star with velocity vtot hosting a planet can be described by an exponential function proportional to $e^{(-v_{\mathrm{tot}}/v_0)}$. Using a Markov Chain Monte Carlo sampler, we determine that v0 &gt;976 km s−1 to 99 per cent confidence, which implies that planets in the Solar neighbourhood are just as likely to form around high-velocity stars as they are around low-velocity stars. Our work highlights the subtle ways in which selection biases can create strong correlations without physical underpinnings.


Author(s):  
S. Karaali ◽  
S. Bilir ◽  
E. Yaz Gökçe ◽  
O. Plevne

Abstract We used the spectroscopic and astrometric data provided from the GALactic Archaeology with HERMES (GALAH) Data Release (DR2) and Gaia DR2, respectively, for a large sample of stars to investigate the behaviour of the [ $\alpha$ /Fe] abundances via two procedures, that is, kinematically and spectroscopically. With the kinematical procedure, we investigated the distribution of the [ $\alpha$ /Fe] abundances into the high-/low-probability thin disc, and high-/low-probability thick-disc populations in terms of total space velocity, [Fe/H] abundance, and age. The high-probability thin-disc stars dominate in all sub-intervals of [ $\alpha$ /Fe], including the rich ones: [ $\alpha$ /Fe] $\,>\,0.3$ dex, where the high-probability thick-disc stars are expected to dominate. This result can be explained by the limiting apparent magnitude of the GALAH DR2 ( $V \lt 14$ mag) and intermediate galactic latitude of the star sample. Stars in the four populations share equivalent [ $\alpha$ /Fe] and [Fe/H] abundances, total space velocities, and ages. Hence, none of these parameters can be used alone for separation of a sample of stars into different populations. High-probability thin-disc stars with abundance $-1.3 \lt {\rm[Fe/H]}\leq -0.5$ dex and age $9 \lt \tau\leq13$ Gyr are assumed to have different birth places relative to the metal-rich and younger ones. With the spectroscopic procedure, we separated the sample stars into $\alpha$ -rich and $\alpha$ -poor categories by means of their ages as well as their [ $\alpha$ /Fe] and [Fe/H] abundances. Stars older than 8 Gyr are richer in [ $\alpha$ /Fe] than the younger ones. We could estimate the abundance [ $\alpha$ /Fe] = 0.14 dex as the boundary separating the $\alpha$ -rich and $\alpha$ -poor sub-samples in the [ $\alpha$ /Fe] $\,\times\,$ [Fe/H] plane.


Sign in / Sign up

Export Citation Format

Share Document